AP Chemistry

Topic 8: Kinetics, Part A,
Day 100:

- Reaction Order
- Rates Laws

1. The reaction

$$
2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}
$$

using the data below, determine the orders for all the reactants, the rate law, and the value of the rate constant.

Experiment	$[\mathrm{A}]$	[B]	Initial Rate $\left(M \mathrm{sec}^{-1}\right)$
1	0.40	0.20	5.5×10^{-3}
2	0.80	0.20	5.5×10^{-3}
3	0.40	0.40	2.2×10^{-2}

a) What is the rate law?

$$
\begin{aligned}
& \text { Rate }=k[\mathrm{~A}]^{\mathrm{m}}[\mathrm{~B}]^{\mathrm{n}} \\
& \frac{\text { Rate }_{E x p ~ 2}}{\text { Rate }_{\operatorname{Exp} 1}}=\frac{5.5 \times 10^{-3}}{5.5 \times 10^{-3}}=1
\end{aligned}
$$

$$
\begin{gathered}
\frac{\text { Rate }_{\operatorname{Exp} 2}}{\text { Rate }_{\text {Exp } 1}}=\frac{k[0.80 \mathrm{M}]^{m}[0.20 \mathrm{M}]^{n}}{k[0.40 \mathrm{M}]^{m}[020 \mathrm{M}]^{n}}=2^{m} ; \frac{[0.80 \mathrm{M}]^{m}}{[0.40 \mathrm{M}]^{m}}=2^{m} ; 2^{\mathrm{m}}=1 \\
\boldsymbol{m}=\mathbf{0} \\
\frac{\text { Rate }_{\text {Exp } 3}}{\text { Rate }_{\text {Exp } 1}}=\frac{2.2 \times 10^{-2}}{5.5 \times 10^{-3}}=4 \\
\frac{\text { Rate }_{\text {Exp } 3}}{\text { Rate }_{\text {Exp } 1}}=\frac{k[0.40 \mathrm{M}]^{m}[0.40 \mathrm{M}]^{n}}{k[240 \mathrm{M}]^{m}[0.20 \mathrm{M}]^{n}}=4 ;[0.40 \mathrm{M}]^{n} \\
\boldsymbol{n}=\mathbf{2}
\end{gathered}
$$

$$
\text { Rate }=k[\mathrm{~A}]^{0}[\mathrm{~B}]^{2}, \quad \text { OR Rate }=k[\mathrm{~B}]^{2}
$$

b) What is the value of the rate constant?

$$
\begin{gathered}
\text { Rate }=k[\mathrm{~B}]^{2} \\
k=\frac{\text { Rate }}{[B]^{2}}=\frac{2.2 \times 10^{-2} M}{(0.40 M)^{2}(\mathrm{sec})}=0.1375 \mathrm{M}^{-1} \mathrm{sec}^{-1}
\end{gathered}
$$

2. The reaction

$$
2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}
$$

using the data below, determine the orders for all the reactants, the rate law, and the value of the rate constant.

Experiment	$[\mathrm{NO}]$	$\left[\mathrm{Cl}_{2}\right]$	Initial Rate $\left(M \mathrm{sec}^{-1}\right)$
1	0.10	0.10	0.18
2	0.10	0.20	0.36
3	0.20	0.20	1.44

a) What is the rate law?

$$
\begin{aligned}
& \text { Rate }=k[\mathrm{NO}]^{\mathrm{m}}\left[\mathrm{Cl}_{2}\right]^{\mathrm{n}} \\
& \frac{\text { Rate }_{E x p} 2}{\text { Rate }_{E x p} 1}=\frac{0.36}{0.18}=2
\end{aligned}
$$

$$
\begin{aligned}
& n=1 \\
& \frac{\text { Rate }_{E x p} 3}{\text { Rate }_{E x p} 2}=\frac{1.44}{0.36}=4 \\
& \begin{aligned}
& \frac{\operatorname{Rate}_{E x p} 3}{\operatorname{Rate}_{E \text { ep } 2}}=\frac{k[0.20 \mathrm{M}]^{m}\left[0.20 \mathrm{M才}^{n}\right.}{k[0.10 \mathrm{M}]^{m}[0.20 \mathrm{M}]^{n}}=4 ; \frac{[0.20 \mathrm{M}]^{m}}{[0.10 \mathrm{M}]^{m}}=4 ; 2.0^{\mathrm{n}}=4 \\
& \boldsymbol{m}=\mathbf{2}
\end{aligned}
\end{aligned}
$$

Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$, note, you do not need to put a "one" as an exponent -it is implied
b) What is the value of the rate constant?

$$
\begin{gathered}
\text { Rate }=k[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right] \\
k=\frac{\text { Rate }}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}=\frac{1.44 \mathrm{M}}{(0.20 \mathrm{M})^{2}(0.20 \mathrm{M})(\mathrm{sec})}=180 \mathrm{M}^{-2} \mathrm{sec}^{-1}
\end{gathered}
$$

3. The reaction between bromate ions and bromide ions in acidic solution is given by the equation below:

$$
\mathrm{BrO}_{3}^{-1}+5 \mathrm{Br}^{-1}+6 \mathrm{H}^{+1} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

using the data below, determine the orders for all three reactants, the rate law, and the value of the rate constant.

Experiment	$\left[\mathrm{BrO}_{3}^{-1}\right]$	$\left[\mathrm{Br}^{-1}\right]$	$\left[\mathrm{H}^{+1}\right]$	Initial Rate $\left(M \mathrm{sec}^{-1}\right)$
1	0.10	0.10	0.10	8.0×10^{-4}
2	0.20	0.10	0.10	1.6×10^{-3}
3	0.20	0.20	0.10	3.2×10^{-3}
4	0.10	0.10	0.20	3.2×10^{-3}

a) What is the rate law?

$$
\begin{array}{cc}
\text { Rate }=k\left[\mathrm{BrO}_{3}{ }^{-1}\right]^{\mathrm{m}}\left[\mathrm{Br}^{-1}\right]^{\mathrm{n}}\left[\mathrm{H}^{+1}\right]^{\mathrm{p}} \\
\frac{\text { Rate }_{E x p ~} 2}{\text { Rate }_{E x p 1}}=\frac{1.6 \times 10^{-3}}{8.0 \times 10^{-4}}=2
\end{array}
$$

b) What is the value of the rate constant?

$$
\begin{gathered}
\text { Rate }=k\left[\mathrm{BrO}_{3}^{-1}\right]\left[\mathrm{Br}^{-1}\right]\left[\mathrm{H}^{+1}\right]^{2} \\
k=\frac{\text { Rate }}{\left[\mathrm{BrO}_{3}^{-1}\right]\left[\mathrm{Br}^{-1}\right]\left[\mathrm{H}^{+1}\right]^{2}}=\frac{3.2 \times 10^{-3} M}{(0.10 M)(0.10 M)(0.20 M)^{2}(\mathrm{sec})}=8 M^{-3} \mathrm{sec}^{-1}
\end{gathered}
$$

