TOPIC 8: KINETICS, PART A,

Reaction Order
 Rates Laws

1. The reaction

$$2 A + B \rightarrow C$$

using the data below, determine the orders for all the reactants, the rate law, and the value of the rate constant.

Experiment	[A]	[B]	Initial Rate (M sec ⁻¹)
1	0.40	0.20	5.5 x 10 ⁻³
2	0.80	0.20	5.5 x 10 ⁻³
3	0.40	0.40	2.2 x 10 ⁻²

a) What is the rate law?

Rate =
$$k [A]^m [B]^n$$

$$\frac{Rate_{Exp 2}}{Rate_{Exp 1}} = \frac{5.5 \times 10^{-3}}{5.5 \times 10^{-3}} = 1$$

$$\frac{Rate_{Exp\ 2}}{Rate_{Exp\ 1}} = \frac{k \ [0.80\ M]^{m} \ [0.20\ M]^{n}}{k \ [0.40\ M]^{m} \ [0.20\ M]^{n}} = 2^{m} \quad ; \quad \frac{[0.80\ M]^{m}}{[0.40\ M]^{m}} = 2^{m} \quad ; \quad 2^{m} = 1$$

$$m = 0$$

$$\frac{Rate_{Exp 3}}{Rate_{Exp 1}} = \frac{2.2 \times 10^{-2}}{5.5 \times 10^{-3}} = 4$$

$$\frac{Rate_{Exp \ 3}}{Rate_{Exp \ 1}} = \frac{k \left[0.40 \ M \right]^m \left[0.40 \ M \right]^n}{k \left[0.40 \ M \right]^m \left[0.20 \ M \right]^n} = 4 \quad ; \quad \frac{\left[0.40 \ M \right]^n}{\left[0.20 \ M \right]^n} = 4 \quad ; \quad 2.0^n = 4$$

$$n = 2$$

Rate =
$$k [A]^0 [B]^2$$
, **OR** Rate = $k [B]^2$

b) What is the value of the rate constant?

Rate =
$$k [B]^2$$

$$k = \frac{Rate}{[B]^2} = \frac{2.2 \times 10^{-2} M}{(0.40 M)^2 (\text{sec})} = 0.1375 M^{-1} \text{ sec}^{-1}$$

Day 100:

2. The reaction

$$2 \text{ NO} + \text{Cl}_2 \rightarrow 2 \text{ NOCl}$$

using the data below, determine the orders for all the reactants, the rate law, and the value of the rate constant.

Experiment	[NO]	[Cl ₂]	Initial Rate (M sec ⁻¹)
1	0.10	0.10	0.18
2	0.10	0.20	0.36
3	0.20	0.20	1.44

a) What is the rate law?

Rate =
$$k [NO]^m [Cl_2]^n$$

$$\frac{Rate_{Exp 2}}{Rate_{Exp 1}} = \frac{0.36}{0.18} = 2$$

$$\frac{Rate_{Exp \ 2}}{Rate_{Exp \ 1}} = \frac{k \left[0.10 \ M \right]^m \left[0.20 \ M \right]^n}{k \left[0.10 \ M \right]^m \left[0.10 \ M \right]^n} = 2 \quad ; \quad \frac{\left[0.20 \ M \right]^n}{\left[0.10 \ M \right]^n} = 2 \quad ; \quad 2^n = 2$$

$$n = 1$$

$$\frac{Rate_{Exp 3}}{Rate_{Exp 2}} = \frac{1.44}{0.36} = 4$$

$$\frac{Rate_{Exp \ 3}}{Rate_{Exp \ 2}} = \frac{k \left[0.20 \ M \right]^m \left[0.20 \ M \right]^n}{k \left[0.10 \ M \right]^m \left[0.20 \ M \right]^n} = 4 \quad ; \quad \frac{\left[0.20 \ M \right]^m}{\left[0.10 \ M \right]^m} = 4 \quad ; \quad 2.0^n = 4$$

$$m = 2$$

Rate = k [NO]² [Cl₂], note, you do not need to put a "one" as an exponent – it is implied

b) What is the value of the rate constant?

Rate =
$$k [NO]^2 [Cl_2]$$

$$k = \frac{Rate}{[NO]^2 [Cl_2]} = \frac{1.44 \ M}{(0.20 \ M)^2 (0.20 \ M)(sec)} = 180 \ M^{-2} \ sec^{-1}$$

3. The reaction between bromate ions and bromide ions in acidic solution is given by the equation below:

$$BrO_3^{-1} + 5 Br^{-1} + 6 H^{+1} \rightarrow 3 Br_2 + 3 H_2O$$

using the data below, determine the orders for all three reactants, the rate law, and the value of the rate constant.

Experiment	[BrO ₃ ⁻¹]	[Br ⁻¹]	$[H^{+1}]$	Initial Rate (M sec ⁻¹)
1	0.10	0.10	0.10	8.0 x 10 ⁻⁴
2	0.20	0.10	0.10	1.6 x 10 ⁻³
3	0.20	0.20	0.10	3.2 x 10 ⁻³
4	0.10	0.10	0.20	3.2 x 10 ⁻³

a) What is the rate law?

Rate =
$$k [BrO_3^{-1}]^m [Br^{-1}]^n [H^{+1}]^p$$

$$\frac{Rate_{Exp 2}}{Rate_{Exp 1}} = \frac{1.6 \times 10^{-3}}{8.0 \times 10^{-4}} = 2$$

$$\frac{Rate_{Exp\ 2}}{Rate_{Exp\ 1}} = \frac{k \left[\begin{array}{cc} 0.20\ M\end{array}\right]^m \left[\begin{array}{cc} 0.10\ M\end{array}\right]^n \left[\begin{array}{cc} 0.10\ M\end{array}\right]^p}{k \left[\begin{array}{cc} 0.10\ M\end{array}\right]^n \left[\begin{array}{cc} 0.10\ M\end{array}\right]^p} = 2 \quad ; \quad \frac{\left[\begin{array}{cc} 0.20\ M\end{array}\right]^m}{\left[\begin{array}{cc} 0.10\ M\end{array}\right]^m} = 2 \quad ; \quad 2^m = 2$$

$$m = 1$$

$$\frac{Rate_{Exp \ 3}}{Rate_{Exp \ 2}} = \frac{3.2 \times 10^{-3}}{1.6 \times 10^{-3}} = 2$$

$$\frac{Rate_{Exp\ 2}}{Rate_{Exp\ 1}} = \frac{k \left[\begin{array}{c} 0.20\ M \end{array}\right]^m \left[\begin{array}{c} 0.20\ M \end{array}\right]^n \left[\begin{array}{c} 0.10\ M \end{array}\right]^p}{k \left[\begin{array}{c} 0.20\ M \end{array}\right]^n \left[\begin{array}{c} 0.10\ M \end{array}\right]^p} = 2 \quad ; \quad \frac{\left[\begin{array}{c} 0.20\ M \end{array}\right]^n}{\left[\begin{array}{c} 0.10\ M \end{array}\right]^n} = 2 \quad ; \quad 2^n = 2$$

$$n = 1$$

$$\frac{Rate_{Exp \ 4}}{Rate_{Exp \ 1}} = \frac{3.2 \times 10^{-3}}{8.0 \times 10^{-4}} = 4$$

$$\frac{Rate_{Exp~4}}{Rate_{Exp~1}} = \frac{k \left[0.10 \ M \right]^m \left[0.10 \ M \right]^n \left[0.20 \ M \right]^p}{k \left[0.10 \ M \right]^m \left[0.10 \ M \right]^n \left[0.10 \ M \right]^p} = 4 \quad ; \quad \frac{\left[0.20 \ M \right]^p}{\left[0.10 \ M \right]^p} = 4 \quad ; \quad 2^n = 4$$

$$p = 2$$

Rate =
$$k [BrO_3^{-1}] [Br^{-1}] [H^{+1}]^2$$

b) What is the value of the rate constant?

Rate =
$$k [BrO_3^{-1}] [Br^{-1}] [H^{+1}]^2$$

$$k = \frac{Rate}{\left[BrO_3^{-1}\right]\left[Br^{-1}\right]\left[H^{+1}\right]^2} = \frac{3.2 \times 10^{-3} M}{\left(0.10 M\right)\left(0.10 M\right)\left(0.20 M\right)^2(\text{sec})} = 8 M^{-3} \text{ sec}^{-1}$$