AP CHEMISTRY

Topic 8: Kinetics, Part C,
Day 102:

- First-Order Reactions
- Half-Life
- Second-Order Reactions

1. The decomposition of hydrogen peroxide was studied, and the following data were obtained at a particular temperature:

Time (sec)	$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$	$\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
0	1.00	0.000
120	0.91	-0.0943
300	0.78	-0.248
600	0.59	-0.528
1200	0.37	-0.994
1800	0.22	-1.514
2400	0.13	-2.040
3000	0.082	-2.501
3600	0.050	-2.996
4000		

Determine: a) the rate law, b) the reaction order, c) the Value of the rate constant, and finally, d) calculate the [$\mathrm{H}_{2} \mathrm{O}_{2}$] at 4000 seconds after the start of the reaction.

Rate Law: Rate $=\boldsymbol{k}\left[\mathbf{H}_{2} \mathbf{O}_{2}\right]$, First-order reaction since the graph forms a "straight line" from the natural log values of the concentrations.

Reaction Order: Since the reactant is first-order and there is only one reactant, the reaction order is first-order.

Rate constant: $\ln \left(\frac{0.91}{1.00}\right)=-k(120 \mathrm{sec}) ; \quad \frac{\ln \left(\frac{0.91}{1.00}\right)}{-120 \mathrm{sec}}=k=7.86 \times 10^{-4} \mathrm{sec}^{-1}$
Concentration at 4000 sec: $\ln \left(\frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{1.00}\right)=-\left(7.86 \times 10^{-4} \sec ^{-1}\right)(4000 \mathrm{sec}) ; \ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=-3.14$

$$
e^{\left(\begin{array}{ll}
\left(\ln \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{1.0 \mathrm{M}}\right)
\end{array}\right)} e^{-3.14} ; \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{1.0 \mathrm{M}}=0.0431 ;\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.0431 \mathrm{M}
$$

2. A certain first-order reaction is 45.0% complete in 65 seconds. Calculate the rate constant and the half-life for this process?

$$
\begin{aligned}
& {[A]=55 \% \text { of }[A]_{0} \text { or }[A]=0.55[A]_{0} ; \quad \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.55}{1.00}\right)=-k(65 \mathrm{sec})} \\
& k=\frac{-0.598}{-65 \mathrm{sec}}=9.20 \times 10^{-3} \mathrm{sec}^{-1} \quad ; \quad \text { Half }- \text { life: } \quad t_{1 / 2}=\frac{\ln (0.5)}{-k}=\frac{-0.693(\mathrm{sec})}{-9.20 \times 10^{-3}}=75.3 \mathrm{sec}
\end{aligned}
$$

3. A certain reaction has the following general form:

$$
\text { a } \mathrm{A} \rightarrow \mathrm{bB}
$$

At a particular temperature, concentration versus time data were collected for this reaction and a plot of $\mathbf{l n}$ [A] versus time resulted in a straight line with a slope value of $-6.90 \times 10^{-2} \mathrm{sec}^{-1}$.
a) Determine the rate law for this reaction,
b) the reaction order,
c) and the value of the rate constant for this reaction.
d) Calculate the half-life for this reaction.
e) Calculate time is required for this reaction to be 87.5% complete?

ANSWERS: Note: The balanced equation given...

a) Rate $=\boldsymbol{k}[\mathbf{A}]^{1}$, straight line with $\ln [\mathrm{A}]$ versus time graph. Since only one reactant, and reactant is first-order, then the reaction order is also first-order. The negative Rate Constant $(-k)$ is equal to the negative slope, therefore,

$$
-k=-6.90 \times 10^{-2} \sec ^{-1} \quad \text { OR } \quad k=6.90 \times 10^{-2} \mathrm{sec}^{-1}
$$

b) Half-life

$$
\begin{gathered}
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.50}{1.00}\right)=-\left(6.90 \times 10^{-2} \mathrm{sec}^{-1}\right) t \\
t_{1 / 2}=\frac{\ln (0.50)(\mathrm{sec})}{-6.90 \times 10^{-2}}=10.0 \mathrm{sec}
\end{gathered}
$$

c) 87.5% consumed, 12.5% remains, how much time is required for this reaction:

$$
\begin{gathered}
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.125}{1.00}\right)=-\left(6.90 \times 10^{-2} \mathrm{sec}^{-1}\right) t \\
t=\frac{\ln (0.125)(\mathrm{sec})}{-6.90 \times 10^{-2}}=30.1 \mathrm{sec}
\end{gathered}
$$

4. A first-order reaction is 38.5% complete in 480 seconds.
a) Calculate the rate constant.
b) What is the value at the half-life.
c) How long will it take for the reaction to go to $25 \%, 75 \%$, and 95% completion.

ANSWERS:

a) $\quad \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.615}{1.00}\right)=-k(480 \mathrm{sec}) \quad ; \quad k=\frac{\ln (0.615)}{-480 \mathrm{sec}}=1.01 \times 10^{-3} \mathrm{sec}^{-1}$
b) \quad Half - life $\quad t_{1 / 2}=\frac{\ln (0.5)}{-k}=\frac{-0.693(\mathrm{sec})}{-1.01 \times 10^{-3}}=684 \mathrm{sec}$
c) 25% consumed, 75% remains, how much time is required for this reaction:

$$
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.75}{1.00}\right)=-\left(1.01 \times 10^{-3} \sec ^{-1}\right) t \quad ; \quad t=\frac{\ln (0.75)(\mathrm{sec})}{-1.01 \times 10^{-3}}=285 \mathrm{sec}
$$

75% consumed, 25% remains, how much time is required for this reaction:

$$
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.25}{1.00}\right)=-\left(1.01 \times 10^{-3} \mathrm{sec}^{-1}\right) t \quad ; \quad t=\frac{\ln (0.25)(\mathrm{sec})}{-1.01 \times 10^{-3}}=1373 \mathrm{sec}
$$

95\% consumed, 5% remains, how much time is required for this reaction:

$$
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.05}{1.00}\right)=-\left(1.01 \times 10^{-3} \sec ^{-1}\right) t \quad ; \quad t=\frac{\ln (0.05)(\mathrm{sec})}{-1.01 \times 10^{-3}}=2966 \mathrm{sec}
$$

