- First-Order Reactions
- Half-Life
- Second-Order Reactions

Example \#1. A certain first-order reaction is 73.0% complete in 110 seconds. Determine the rate constant and the halflife for this process.
If the reaction is 73% complete, then 73% of the original concentration is consumed, leaving 27%.

$$
\left.\begin{array}{c}
{[A]_{t}=27 \% \text { of }[A]_{0} \text { or }[A]_{t}=0.27[A]_{0} ; \quad \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.27}{1.00}\right)=-k(110 \mathrm{sec})} \\
\ln (0.27) \\
=-k(110 \mathrm{sec}),-1.309=-k(110 \mathrm{sec}) \\
k
\end{array}\right)=\frac{-1.309}{-110 \mathrm{sec}}=1.19 \times 10^{-2} \mathrm{sec}^{-1} .
$$

Half-life

$$
t_{1 / 2}=\frac{\ln (0.5)}{k}=\frac{-0.693}{-k} ; \quad t_{1 / 2}=\frac{0.693}{\left(\frac{1.19 \times 10^{-2}}{\mathrm{sec}}\right)}=\frac{0.693(\mathrm{sec})}{1.19 \times 10^{-2}}=58.2 \mathrm{sec}
$$

Example \#2. A first-order reaction is 20.5% complete in 200 seconds.
a) Calculate the rate constant.
b) What is the value (amount of time) at the half-life.
c) How long will it take for the reaction to go to 45%, and 85% completion?
a) If the reaction is 20.5% complete, then 20.5% of the original concentration is consumed, leaving 79.5%.
$[A]_{t}=79.5 \%$ of $[A]_{0}$ or $[A]_{t}=0.795[A]_{0} ; \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \ln \left(\frac{0.795}{1.00}\right)=-k(200 \mathrm{sec})$

$$
\begin{gathered}
\ln (0.795)=-k(200 \mathrm{sec}),-0.229=-k(200 \mathrm{sec}) \\
k=\frac{-0.229}{-200 \mathrm{sec}}=1.145 \times 10^{-3} \mathrm{sec}^{-1}
\end{gathered}
$$

b)

$$
t_{1 / 2}=\frac{-0.693}{-k} \quad ; \quad t_{1 / 2}=\frac{-0.693(\mathrm{sec})}{-1.15 \times 10^{-3}}=604 \mathrm{sec}
$$

c) If the reaction is 45% complete, then 55% of the original concentration is consumed, leaving 55%.

$$
\begin{gathered}
{[A]_{t}=55 \% \text { of }[A]_{0} \text { or }[A]_{t}=0.55[A]_{0} ; \quad \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.55}{1.00}\right)=-\left(1.15 \times 10^{-3}\right) t} \\
t=\frac{-0.598(\mathrm{sec})}{-1.15 \times 10^{-3}}=520 \mathrm{sec} \quad t=\frac{-1.897(\mathrm{sec})}{-1.15 \times 10^{-3}}=1650 \mathrm{sec} \quad(85 \% \text { answer })
\end{gathered}
$$

Example \#3. A certain second-order reaction is 67.0% complete in 27.3 seconds. Determine the rate constant and the half-life for this process.

If the reaction is 67% complete, then 67% of the original concentration is consumed, leaving 33%.

$$
[A]_{t}=33 \% \text { of }[A]_{0} \text { or }[A]_{t}=0.33[A]_{0} ; \quad \frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t
$$

the equation then becomes:

$$
\frac{1}{0.33 M}-\frac{1}{1.00 M}=k(27.3 \mathrm{sec})
$$

then subtract alike terms:

$$
\frac{3 . \overline{03}}{M}-\frac{1}{M}=k(27.3 \mathrm{sec})=\frac{2 . \overline{03}}{M}
$$

the equation then becomes:

$$
\frac{2 . \overline{03}}{(27.3 \mathrm{sec})(M)}=k=0.07437 \mathrm{sec}^{-1} M^{-1}
$$

Now, that you know k, solve for the half-life period:

$$
\frac{1}{[A]_{0}}=k t_{1 / 2} ; \quad t_{1 / 2}=\frac{1}{[A]_{0}(k)}=\frac{1(\sec M)}{(1.00 M)(0.07437)}=13.4 \mathrm{sec}
$$

