- Reactant Order
- Second-Order Reactions
- Catalysts
- Rates Laws
- Reaction Mechanisms
- First-Order Reactions
- Rate-Determining Step
- Half-Life
- Arrhenius Equation

1. The reaction

$$
A+B \rightarrow C+D
$$

using the data below, determine the orders for all three reactants, the rate law, and the value of the rate constant.

Experiment	$[\mathrm{A}]$	$[\mathrm{B}]$	Initial Rate $\left(M \mathrm{sec}^{-1}\right)$
1	0.10	0.15	2.5
2	0.20	0.15	5.0
3	0.092	0.386	15.23

a) What is the rate law?

$$
\begin{aligned}
& \text { Rate }=k[\mathrm{~A}]^{\mathrm{m}}[\mathrm{~B}]^{\mathrm{n}} \\
& \frac{\text { Rate }_{E x p ~ 2 ~}}{\text { Rate }_{E x p ~ 1 ~}}=\frac{5.0}{2.5}=2 \\
& \frac{\text { Rate }_{\text {Exp } 2}}{\text { Rate }_{\text {Exp } 1}}=\frac{k[0.20 \mathrm{M}]^{m}[0.15 \mathrm{M}]^{n}}{k[0.10 \mathrm{M}]^{m}[0.15 \mathrm{M}]^{n}}=2 \quad ; \quad[0.20 \mathrm{M}]^{\mathrm{m}} \mathrm{~m}^{\mathrm{m}}=2 ; 2.0^{\mathrm{m}}=2 \\
& m=1 \\
& \frac{\text { Rate }_{E x p ~ 3}}{\text { Rate }_{E x p ~ 1 ~}}=\frac{15.23}{2.5}=6.092 ; \quad \frac{\text { Rate }_{\text {Exp 3 }}}{\text { Rate }_{E x p ~} 1}=\frac{k[0.092 \mathrm{M}]^{1}[0.386 \mathrm{M}]^{n}}{k[0.10 \mathrm{M}]^{1}[0.15 \mathrm{M}]^{n}}=6.092 \\
& \begin{aligned}
6.092=(0.92) \frac{[0.386 M]^{n}}{[0.15 M]^{n}} ; \frac{6.092}{0.92} & =6.622=\frac{[0.386 M]^{n}}{[0.15 M]^{n}} ; 2.573^{\mathrm{n}}=6.622 \\
\boldsymbol{n} & =2
\end{aligned} \\
& \text { Rate }=k[\mathrm{~A}][\mathrm{B}]^{2}
\end{aligned}
$$

b) What is the value of the rate constant?

$$
\begin{gathered}
\text { Rate }=k[\mathrm{~A}][\mathrm{B}]^{2} \\
k=\frac{\text { Rate }}{[A][B]^{2}}=\frac{15.23 \mathrm{M}}{(0.092 \mathrm{M})(\mathrm{sec})(0.386 \mathrm{M})^{2}}=1.1 \times 10^{3} \mathrm{M}^{-2} \mathrm{sec}^{-1}
\end{gathered}
$$

2. A certain first-order reaction is 31.6 \% complete in 31.6 seconds. What are the rate constant and the half-life for this process?

$$
\begin{aligned}
& \qquad A]=68.4 \% \text { of }[A]_{0} \text { or }[A]=0.684[A]_{0} \\
& \ln \left(\frac{[A]}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.684}{1.00}\right)=-k(31.6 \mathrm{sec}) \\
& k=\frac{-0.380}{-31.6 \mathrm{sec}}=1.20 \times 10^{-2} \mathrm{sec}^{-1} \\
& \text { Half - life } \quad t_{1 / 2}=\frac{0.693(\mathrm{sec})}{1.20 \times 10^{-2}}=57.7 \mathrm{sec}
\end{aligned}
$$

4. A first-order reaction is 72.3% complete in 12 seconds.
a) Calculate the rate constant.
b) What is the value at the half-life.
c) How long did it take for the reaction to go to 20% completion.
a)

$$
\begin{aligned}
\ln \left(\frac{[A]}{[A]_{0}}\right) & =-k t, \quad \ln \left(\frac{0.277}{1.00}\right)=-k(12 \mathrm{sec}) \\
k & =\frac{\ln (0.277)}{-12 \mathrm{sec}}=0.107 \mathrm{sec}^{-1}
\end{aligned}
$$

b)

$$
\text { Half - life } \quad t_{1 / 2}=\frac{0.693(\mathrm{sec})}{0.107}=6.48 \mathrm{sec}
$$

c) 25% consumed, 20% remains, how much time is required for this reaction:

$$
\begin{gathered}
\ln \left(\frac{[A]}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.80}{1.00}\right)=-\left(0.107 \mathrm{sec}^{-1}\right) t \\
t=\frac{\ln (0.80)(\mathrm{sec})}{-0.107}=2.09 \mathrm{sec}
\end{gathered}
$$

5. (Past AP Question) An environmental concern is the depletion of O_{3} in Earth's upper atmosphere, where O_{3} is normally in equilibrium with O_{2} and O . A proposed mechanism for the depletion of O_{3} in the upper atmosphere is shown below:

$$
\begin{array}{ll}
\text { Step I } & \mathrm{O}_{3}+\mathrm{Cl} \rightarrow \mathrm{O}_{2}+\mathrm{ClO} \\
\text { Step II } & \mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2}
\end{array}
$$

a) Write a balanced equation for the overall reaction represented by Step I and Step II above.

$$
\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2}
$$

b) Clearly identify the catalyst in the mechanism above. Justify your answer.

Cl is the catalyst in the reaction. It is a reactant in Step I and reappears as a product in Step II (the last step). Again, a catalyst MUST "return" to its original status.
c) Clearly identify the intermediate in the mechanism above. Justify your answer.

ClO is the intermediate in the reaction. It is a product in Step I and reappears as a reactant in Step II
d) If the rate law for the overall reaction is found to be, Rate $=k\left[\mathrm{O}_{3}\right][\mathrm{Cl}]$, determine the following.
i) The overall order of the reaction.

Overall order is $1+1=2$

ii) Appropriate units for the rate constant, k

$$
k=\frac{\text { Rate }}{\left[\mathrm{O}_{3}\right][\mathrm{Cl}]}=\frac{M \text { time }^{-1}}{M \times M}=\mathrm{M}^{-1} \mathrm{time}^{-1}
$$

iii) The rate-determining step of the reaction, along with justification for your answer.

The reaction rate is affected by the concentrations of [O_{3}] and [Cl], both appearing only in step I. Also, if the rate-determining step was the second step, oxygen [O] would appear in the rate law.

