AP CHEMISTRY

Topic 8: Kinetics, More Practice

Answer the following questions related to the kinetics of chemical reactions.

$$
\mathrm{I}_{(\mathrm{aq})}^{-1}+\mathrm{ClO}^{-1}{ }_{(\mathrm{aq})} \xrightarrow{\mathrm{OH}^{-1}} \mathrm{IO}^{-1}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-1}{ }_{(\mathrm{aq})}
$$

Iodide ion, I^{-1}, is oxidized to hypoiodite, IO^{-1}, by hypochlorte, ClO^{-1}, in basic solution according to the equation above. Three initial rate experiments were conducted; the results are shown in the following table:

Experiment	$\left[\mathrm{I}^{-}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$\left[\mathrm{ClO}^{-}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Initial Rate of Formation of IO^{-} $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.017	0.015	0.156
2	0.052	0.015	0.476
3	0.016	0.061	0.596

(a) Determine the order of the reaction with respect to each reactant listed below. Show your work.
(i) $\mathrm{I}^{-1}{ }_{(a q)}$

$$
\begin{aligned}
& \frac{\text { Rate } 2}{\text { Rate } 1}=\frac{0.476}{0.156}=3.05=\frac{k(0.052)^{m}(0.01 / 2)^{n}}{k(0.017)^{m}(0.015)^{n}} \\
& 3.05=\frac{(0.052)^{m}}{(0.017)^{m}} ; 3.05=3.05^{m} ; \boldsymbol{m}=\mathbf{1}
\end{aligned}
$$

(i) $\mathrm{ClO}^{-1}{ }_{(\text {aq })}$

$$
\begin{gathered}
\frac{\text { Rate } 3}{\text { Rate } 1}=\frac{0.596}{0.156}=3.82=\frac{k(0.016)^{1}(0.061)^{n}}{k(0.017)^{1}(0.015)^{n}} \\
3.82=(0.94) \frac{(0.061)^{n}}{(0.015)^{n}} \quad ; \frac{3.82}{0.94}=\frac{(0.061)^{n}}{(0.015)^{n}} \quad ; 4.06=4.06^{n} \quad ; \boldsymbol{n}=\mathbf{1}
\end{gathered}
$$

(b) For the reaction,
(i) write the rate law that is consistent with the calculations in part (a):

$$
\text { Rate }=k\left[\mathrm{I}^{-1}\right]\left[\mathrm{ClO}^{-1}\right] \quad \text { OR Rate }=k\left[\mathrm{I}^{-1}\right]^{1}\left[\mathrm{ClO}^{-1}\right]^{1}
$$

(ii) calculate the value of the specific rate constant, k, and specify units.

$$
k=\frac{0.596 M}{(0.016 M)(\sec)(0.061 M)}=611 M^{-1} \sec ^{-1} \text { or } 610 M^{-1} \mathrm{sec}^{-1}
$$

The catalyzed decomposition of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}$, is represented by the following equations.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \text { (aq) } \xrightarrow{\text { catalyst }} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}
$$

The kinetics of the decomposition reaction were studied and the analysis of the results show that it is a first-order reaction. Some of the experimental data are shown in the table below:

| $\left.\begin{array}{\|c\|c\|}\left.\hline \mathrm{H}_{2} \mathrm{O}_{2}\right] \\ (\mathrm{mol} \mathrm{L}\end{array}\right)$ | |
| :---: | :---: | \(\left.\begin{array}{c}Time

(minutes)\end{array}\right]\)| 1.00 | 0.0 |
| :---: | :---: |
| 0.78 | 5.0 |
| 0.61 | 10.0 |

(c) During the analysis of the data, the graph below was produced.

ANSWER: (above)
(i) Label the vertical axis of the graph
(ii) What are the units of the rate constant, k, for the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}$?

FIRST-ORDER REACTION (Given in question): Rate (units for ALL reactions) $=M \min ^{-1}$ Rate Law (for this reaction) is ; Rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$

$$
k=\frac{\left(\frac{M}{\min }\right)}{M}=\min ^{-1}
$$

(ii) On the graph, draw the line that represents the plot of the uncatalyzed first-order decomposition of $1.00 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2 \text { (aq) }}$.

ANSWER:

Explanation of the graph above: The concentrations of the first order reaction will be HIGHER as time advances during the reaction (compared with a catalyzed reaction) - this is because the reaction is NOT able to react AS FAST. Also, recall that the natural log of a first order reaction will generate a negative (straight line) slope when plotted versus time. The darker line represents the un-catalyzed reaction.
2. A certain first-order reaction is 82.7 \% complete in 231 seconds. What are the rate constant and the half-life for this process?
$[A]_{t}=17.3 \%$ of $[A]_{0}$ or $[A]_{t}=0.173[A]_{0} ; \quad \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.173}{1.00}\right)=-k(231 \mathrm{sec})$

$$
k=\frac{-1.7545}{-231 \mathrm{sec}}=0.007595 \mathrm{sec}^{-1}
$$

Half-life: $\quad \ln \left(\frac{0.50}{1.00}\right)=-\left(0.007595 \mathrm{sec}^{-1}\right) t \quad ; \quad \frac{\ln (0.50)(\mathrm{sec})}{-0.007595}=t=91.2 \mathrm{sec}$
OR

$$
t_{1 / 2}=\frac{0.693(\mathrm{sec})}{0.007595}=91.2 \mathrm{sec}
$$

3. A second-order reaction is 63.8% complete in 79.3 seconds.
a) Calculate the rate constant.
b) What is the value (time) at the half-life.
c) How long did it take for the reaction to go to 33.6 \% completion.
a)

$$
\begin{gathered}
\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t, \quad \frac{1}{(0.362 M)}-\frac{1}{(1.0 M)}=k(79.3 \mathrm{sec}) \quad ; \quad \frac{1.7624}{M}=k(79.3 \mathrm{sec}) ; \\
\frac{1.7624}{M(79.3 \mathrm{sec})}=k=\frac{0.022225}{M \cdot \mathrm{sec}}
\end{gathered}
$$

b)

$$
\begin{gathered}
\text { Half - life } \quad ; \quad \frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t, \quad \frac{1}{(0.50 M)}-\frac{1}{(1.0 M)}=\left(\frac{0.022225}{M \cdot \sec }\right) t \\
\frac{2}{M}-\frac{1}{M}=\left(\frac{0.022225}{M \cdot \sec }\right) t \quad ; \quad \frac{(1)(M \cdot \mathrm{sec})}{(M)(0.022225)}=t=45.0 \mathrm{sec}
\end{gathered}
$$

OR

$$
t_{1 / 2}=\frac{1}{k[A]_{0}} \quad ; \quad t_{1 / 2}=\frac{1(M \cdot \mathrm{sec})}{0.022225(1.0 M)}=45.0 \mathrm{sec}
$$

c) 33.6% consumed, $\mathbf{6 6 . 4} \%$ remains, how much time is required for this reaction:

$$
\begin{gathered}
\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t, \quad \frac{1}{(0.664 M)}-\frac{1}{(1.0 M)}=\left(\frac{0.022225}{M \cdot \sec }\right) t \quad ; \quad \frac{0.5060}{M}=\left(\frac{0.022225}{M \cdot \mathrm{sec}}\right) t \\
\frac{0.5060}{M}\left(\frac{M \cdot \mathrm{sec}}{0.022225}\right)=t=22.77 \mathrm{sec}
\end{gathered}
$$

