## AP Chemistry

Topic 8: Kinetics, Much More Practice

1. Answer the following questions related to the kinetics of chemical reactions.

$$
2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

Experiments were conducted to study the rate of the reaction represented by the equation above. Initial concentrations and rates of reaction are given in the table below.

|  | Initial <br> Concentration <br> $(\mathrm{mol} / \mathrm{L})$ |  | Initial Rate of <br> Formation of $\mathrm{N}_{2}$ |
| :---: | :---: | :---: | :---: |
| $\left[\mathrm{H}_{2}\right]$ | $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{min})$ |  |  |
| 1 | 0.0060 | 0.0010 | $1.8 \times 10^{-4}$ |
| 2 | 0.0060 | 0.0020 | $3.6 \times 10^{-4}$ |
| 3 | 0.0010 | 0.0060 | $0.30 \times 10^{-4}$ |
| 4 | 0.0020 | 0.0060 | $1.2 \times 10^{-4}$ |

(a) (i) Determine the order for each of the reactants, NO and $\mathrm{H}_{2}$

## Answers:

$$
\begin{aligned}
& \text { Rate }=k[\mathrm{NO}]^{\mathrm{m}}\left[\mathrm{H}_{2}\right]^{\mathrm{n}} \\
& \frac{\text { Rate }_{E_{\text {xp } 2}}}{\text { Rate }_{\text {Exp } 1}}=\frac{3.6 \times 10^{-4}}{1.8 \times 10^{-4}}=2 \\
& \frac{\text { Rate }_{E x p ~} 2}{\text { Rate }_{E x p} 1}=\frac{k[0.0060-\mathrm{T}]^{m}[0.20 \mathrm{M}]^{n}}{k[0.0060 \mathrm{M}]^{m}[0.10 \mathrm{M}]^{n}}=2^{n} ; \frac{[0.20 \mathrm{M}]^{n}}{[0.10 \mathrm{M}]^{n}}=2^{n} ; 2^{\mathrm{n}}=2 \\
& \boldsymbol{n}=\mathbf{1}=\left[\mathrm{H}_{2}\right]^{1} \\
& \frac{\text { Rate }_{\text {Exp } 4}}{\text { Rate }_{\text {Exp } 3}}=\frac{1.2 \times 10^{-4}}{0.30 \times 10^{-4}}=4 \\
& \frac{\text { Rate }_{E x p ~} 4}{\text { Rate }_{E x p ~} 3}=\frac{k[0.0020 \mathrm{M}]^{m}\left[0.0060 \mathrm{M} \mathrm{~T}^{1}\right.}{k[0.0010 \mathrm{M}]^{m}[00060 \mathrm{M}]^{1}}=2^{m} ; \frac{[0.0020 \mathrm{M}]^{m}}{[0.0010 \mathrm{M}]^{m}}=2^{m} ; 2^{\mathrm{m}}=4 \\
& \boldsymbol{m}=\mathbf{2}=[\mathrm{NO}]^{2}
\end{aligned}
$$

(ii) Write the overall rate law for the reaction.

Answers:

$$
\begin{aligned}
\text { Rate } & =k[\mathrm{NO}]^{\mathrm{m}}\left[\mathrm{H}_{2}\right]^{\mathrm{n}} \\
\text { Rate } & =k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]^{1}
\end{aligned}
$$

(b) Calculate the value of the rate constant, $k$, for the reaction. Include units.

## Answers:

$$
k=\frac{\text { Rate }}{[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]^{1}}=\frac{1.8 \times 10^{-4} \mathrm{M}}{(0.0060 \mathrm{M})^{2}(0.0010 \mathrm{M})(\mathrm{min})}=5000 \frac{1}{\mathrm{M}^{2} \cdot \mathrm{~min}}
$$

(c) For experiment 2, calculate the concentration of NO remaining when exactly one-half of the original amount of $\mathrm{H}_{2}$ had been consumed.

## Answers:

$$
\begin{gathered}
{\left[\mathrm{H}_{2}\right]_{0}=\text { initial concentration }=0.0020 \mathrm{M}} \\
{\left[\mathrm{H}_{2}\right]_{\mathrm{t}}=\text { half original concentration }=0.0010 \mathrm{M}} \\
\frac{0.0010 \mathrm{~mol} \mathrm{H}}{L} \times \frac{2 \mathrm{~mol} \mathrm{NO}}{2 \mathrm{~mol} \mathrm{H}_{2}}=\frac{0.0010 \mathrm{~mol} \mathrm{NO}}{L}=0.0010 \mathrm{M} \mathrm{NO} \text { reacted } \\
{[\mathrm{NO}]_{\mathrm{t}}=0.0060 \mathrm{M}-0.0010 \mathrm{M}}
\end{gathered} \mathrm{=0.0050M} \mathrm{~L}
$$

(d) The following sequence of elementary steps is a proposed mechanism for the reaction.

> I. $\mathrm{NO}+\mathrm{NO} \leftrightarrow \mathrm{N}_{2} \mathrm{O}_{2}$
> II. $\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}$
> III. $\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$

Based on the data presented, which of the above is the rate-determining step?

## Answers:

Based on the calculated rate law... Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]^{1}$
Step II is the "Slow Step". Step I \& II include all the reactants in the rate law.
Step III is NOT the slow step because hydrogen gas is only FIRST order.
2. The reaction between NO and $\mathrm{H}_{2}$ is believed to occur in the following three-step process.

$$
\begin{array}{ll}
\mathrm{NO}+\mathrm{NO} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{2} & \text { (fast) } \\
\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} & \text { (slow) } \\
\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} & \text { (fast) }
\end{array}
$$

(a) Write a balanced equation for the overall reaction.

Answers:

$$
\begin{gathered}
\mathrm{NO}+\mathrm{NO} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{2} \\
\mathrm{~A}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

$$
2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(b) Identify the intermediates in the reaction. Justify your answer.

Answers:

$$
\mathrm{N}_{2} \mathrm{O}_{2} \& \mathrm{~N}_{2} \mathrm{O}
$$

## Justification: Intermediates are "things" that are produced and LATER used as a reactant.

(c) From the mechanism represented above, a student correctly deduces that the rate law for the reaction is Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$. The student then concludes that (1) the reaction is third-order and (2) the mechanism involves the simultaneous collision of two NO molecules and an $\mathrm{H}_{2}$ molecule. Are conclusions (1) and (2) correct? Explain.

Answers:
Conclusion (1) is correct; the sum of the orders (exponents) in the rate law (2+1) $=3$ is equal to the REACTION order. Conclusion (2) is NOT correct. According to the elementary steps two NO molecules collide to form $\mathrm{N}_{2} \mathrm{O}_{2}$ (forming an intermediate) and the $\mathrm{N}_{2} \mathrm{O}_{2}$ THEN collides with the $\mathrm{H}_{2}$ molecule. It is VERY DIFFICULT (but not impossible) for three different molecules (particles) to collide correctly at the same time to form a new molecule(s).
(d) Explain why an increase in temperature increases the rate constant, $k$, given the rate law in (c).

Answers:
This is NOT a trick question. Also, recall that constants (Kinetics and Equilibrium) are constant as long as the TEMPERATURE remains the same. Temperature is an amazing variable that can change a lot of "things" when discussing chemistry. So, to answer the question, increasing the temperature increases the constant, $k$, because the temperature increase allows the particles to move more rapidly allowing more possible collisions. Collisions equal reactions!
3. Draw the following graphs for each condition:

time

time

time
first order

To view the data and these graphs (a little more closely), go to:
www.avon-chemistry.com/graph.html

first order

time
first order

second order

time
second order
4. A certain second-order reaction is $22.3 \%$ complete in 177 seconds. Calculate the rate constant and the half-life for this process.

$$
\begin{gathered}
\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t, \quad \frac{1}{0.777 M}-\frac{1}{1 M}=k(177 \mathrm{sec}) ;\left(\frac{1.287001}{M}-\frac{1}{M}\right)=k(177 \mathrm{sec}) \\
k=\frac{0.287001}{177 M \cdot \mathrm{sec}}=0.0016215 \frac{1}{M \cdot \mathrm{sec}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Half-life: }\left(\frac{1}{0.50 M}-\frac{1}{1 M}\right)=\left(0.0016215 \frac{1}{M \cdot \mathrm{sec}}\right) t_{1 / 2} ;\left(\frac{2-1}{M}\right)=\left(0.0016215 \frac{1}{M \cdot \mathrm{sec}}\right) t_{1 / 2} \\
t_{1 / 2}=\frac{1(M \cdot \mathrm{sec})}{0.0016215 M}=617 \mathrm{sec}
\end{gathered}
$$

5. Information for the chemical reaction was collected by measuring the concentration of $\mathrm{A},[\mathrm{A}]$, at a particular temperature. Concentration versus time data were collected for this reaction and a plot of $\frac{1}{[A]}$ versus time resulted in a straight line with a slope value of $+0.230622 \mathrm{M}^{-1} \cdot \mathrm{sec}^{-1}$. Calculate the time required for this reaction to be $84.6 \%$ complete. Also, calculate the half-life time.

$$
\begin{gathered}
\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t, \frac{1}{0.154 M}-\frac{1}{1 M}=\left(\frac{0.230622}{M \cdot \mathrm{sec}}\right) t \\
\left(\frac{6.493506-1}{M}\right)=\left(\frac{0.230622}{M \cdot \mathrm{sec}}\right) t ;\left(\frac{5.493506}{M}\right)=\left(\frac{0.230622}{M \cdot \mathrm{sec}}\right) t \\
t=\frac{5.493506(M \cdot \mathrm{sec})}{0.230622 M}=23.8 \mathrm{sec} \\
\text { Half }- \text { life: } t_{1 / 2}=\frac{1(M \cdot \mathrm{sec})}{0.230622 M}=4.34 \mathrm{sec}
\end{gathered}
$$

6. Information for the chemical reaction was collected by measuring the concentration of $\mathrm{A}, \mathrm{A}]$, at a particular temperature. Concentration versus time data were collected for this reaction and a plot of $\ln$ [ A ] versus time resulted in a straight line with a slope value of $-0.00930622 \mathrm{sec}^{-1}$. Calculate the time required for this reaction to be 26.6 \% complete. Also, calculate the half-life time.

$$
\begin{gathered}
\ln \left(\frac{[A]}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.734}{1.00}\right)=-\left(0.00930622 \mathrm{sec}^{-1}\right) t \\
t=\frac{\ln (0.734)(\mathrm{sec})}{-0.00930622}=33.2 \mathrm{sec} \\
\text { Half - life: } \quad t_{1 / 2}=\frac{\ln (0.50)(\mathrm{sec})}{-0.00930622}=74.5 \mathrm{sec}
\end{gathered}
$$

7. A certain first-order reaction has $63.3 \%$ concentration remaining after 403 seconds. Calculate the rate constant and the half-life for this process.

$$
\begin{gathered}
\ln \left(\frac{[A]}{[A]_{0}}\right)=-k t, \quad \ln \left(\frac{0.633}{1.00}\right)=-k(403 \mathrm{sec}) \\
k=\frac{\ln (0.633)}{-403 \mathrm{sec}}=0.0011347 \mathrm{sec}^{-1} \\
\text { Half-life: } \quad t_{1 / 2}=\frac{\ln (0.50)(\mathrm{sec})}{-0.0011347}=611 \mathrm{sec}
\end{gathered}
$$

