- Laws of Thermodynamics
- Enthalpy
- Specific Heat

1. A 2.50 kg piece of copper metal is heated from $25^{\circ} \mathrm{C}$ to $225^{\circ} \mathrm{C}$. How much heat, in kJ , is absorbed by the copper ? The specific heat for copper is $0.384 \mathrm{~J} / \mathrm{g}{ }^{0} \mathrm{C}$.

$$
\begin{gathered}
q=m c \Delta T \\
q=(2500 \mathrm{~g})\left(\frac{0.384 \mathrm{~J}}{g^{0} \mathrm{C}}\right)\left(225^{0} \mathrm{C}-25^{\circ} \mathrm{C}\right)=1.92 \times 10^{5} \mathrm{~J} \\
\frac{1.92 \times 10^{5} \mathrm{~J}}{2} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=192 \mathrm{~kJ}
\end{gathered}
$$

2. Determine if the following processes are endothermic or exothermic? Then Explain why.
a) When solid potassium bromide (ENDO) is dissolved in water (EXO), the solution gets colder.
Potassium Bromide = Endothermic (absorbed energy from the water to dissolve).
b) Natural gas (CH_{4}) is burned (EXO) in a furnace to heat the house (ENDO).

Natural Gas = Exothermic, (Air in the house absorbs the energy from the combustion of the gas)
c) When concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}($ EXO $)$ is added to water (ENDO), the solution gets very hot.
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is Exothermic, (the water absorbs the energy from the sulfuric acid to get hot)
d) Water (ENDO) is boiled in a teakettle while sitting on the stove "element" (EXO).

Water is Endothermic, (the water absorbs the energy from the stove to boil)

3. The complete combustion of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, in oxygen gas, O_{2}, produces carbon dioxide and water. It is a highly exothermic process releasing 1273.02 kJ of heat per mole of glucose. Write the balanced thermochemical equation, using all whole-number coefficients. Also, determine the enthalpy change in burning 250.0 grams of glucose.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} ; \Delta H=-1273.02 \mathrm{~kJ}
$$

Since we have one mole of glucose represented (from the balanced equation above) we do not need to re-write the equation in "fractional form"

For the second part of this question, you know that the enthalpy change for one mole butane is - 1273.02 kJ . All you need to do is determine what fraction of a mole 250.0 grams is and reduce the enthalpy by that amount:

$$
\begin{gathered}
\frac{250.0 g C_{6} H_{12} \mathrm{O}_{6}}{} \times \frac{1 \mathrm{~mol}}{180.1608 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=1.388 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \\
\frac{1.388 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{} \times \frac{-1273.02 \mathrm{~kJ}}{1 \mathrm{~mol}}=-1767 \mathrm{~kJ}
\end{gathered}
$$

4. An unknown metal, with a mass of 125 grams, is in a beaker of boiling water, at a temperature of $99.87^{\circ} \mathrm{C}$, after a few minutes, the metal IS QUICKLY moved to the calorimeter with 250 milliliters of water at a temperature of 293 K . After a small amount of time has passed, the temperature of the water in the calorimeter changed (and stopped changing) to 297.3 K . What is the specific heat of the metal (with the correct units for specific heat)?

$$
\begin{array}{|l|c|c|}
\hline & \mathrm{H}_{2} \mathrm{O} & \text { Metal } \\
\hline \mathrm{m} & 250 \mathrm{~g} & 125 \mathrm{~g} \\
\hline \mathrm{~T}_{\mathrm{i}} & 20^{\circ} \mathrm{C} & 99.87^{0} \mathrm{C} \\
\hline \mathrm{~T}_{\mathrm{f}} & 24.3^{0} \mathrm{C} & 24.3^{0} \mathrm{C} \\
\hline \mathrm{c} & 4.184 & ? \\
q_{\mathrm{H}_{2} \mathrm{O}}=m c \Delta T ; q_{\mathrm{H}_{2} \mathrm{O}}=(250 \mathrm{~g})\left(\frac{4.184 \mathrm{~J}}{\mathrm{~g}^{0} \mathrm{C}}\right)\left(24.3^{0} \mathrm{C}-20^{0} \mathrm{C}\right)=4497.8 \mathrm{~J} \\
q_{\text {metal }}=m c \Delta T \quad ; q_{\text {metal }}=-4497.8 \mathrm{~J}=(125 \mathrm{~g})(\mathrm{c})\left(24.3^{0} \mathrm{C}-99.87^{\circ} \mathrm{C}\right) \\
c_{\text {metal }}=\frac{-4497.8 \mathrm{~J}}{(125 \mathrm{~g})\left(-75.57^{0} \mathrm{C}\right)}=0.476 \frac{\mathrm{~J}}{\mathrm{~g}^{0} \mathrm{C}}
\end{array}
$$

5. In this problem, 157.0 mL of $0.350 \mathrm{M} \mathrm{Pb}\left(\mathrm{ClO}_{3}\right)_{2}$ and 75.3 mL of 0.220 MCuSO 4 are mixed together. First, will this reaction occur? If so what is the NET equation of this reaction?

$$
\begin{gathered}
\mathrm{Pb}\left(\mathrm{ClO}_{3}\right)_{2}+\mathrm{CuSO}_{4} \rightarrow \mathrm{PbSO}_{4}+\mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2} \\
\text { (net) } \mathrm{Pb}^{+2}+\mathrm{SO}_{4}^{-2} \rightarrow \mathrm{PbSO}_{4}
\end{gathered}
$$

The initial temperature of the solution was $19{ }^{\circ} \mathrm{C}$, and the final temperature was $32.8^{\circ} \mathrm{C}$. Determine the enthalpy, in $\mathrm{kJ} / \mathrm{mol}$, for the formation of the product (if there is one ???). The volume of the final solution was 232.3 mL , and it had a density of $1.085 \mathrm{~g} / \mathrm{mL}$. The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\frac{232.3 \mathrm{~mL}}{\frac{1.085 \mathrm{~g}}{1 \mathrm{~mL}}=252.0455 \mathrm{~g}} \\
q_{\mathrm{H}_{2} \mathrm{O}}=(252.0455 \mathrm{~g})\left(\frac{4.184 \mathrm{~J}}{g^{0} \mathrm{C}}\right)\left(32.8^{0} \mathrm{C}-19^{0} \mathrm{C}\right)=14552.91 \mathrm{~J} \\
\frac{14552.91 \mathrm{~J}}{} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=14.55291 \mathrm{~kJ}
\end{gathered}
$$

Limiting Reactant?

$\frac{157.0 \mathrm{~mL}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~L}}{1.350 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{ClO}_{3}\right)_{2}} \times \frac{1 \mathrm{~mol} \mathrm{CuSO}}{4} 10 \frac{L}{1{\mathrm{~mol} \mathrm{~Pb}\left(\mathrm{ClO}_{3}\right)_{2}}_{L}^{10.222 \mathrm{~mol} \mathrm{CuSO}} 4} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=247.5 \mathrm{~mL}$
Copper(II) sulfate is the Limiting Reactant. Recall, if you use ALL 157 mL of the lead(II) chlorate you would NEED AT LEAST 247.5 mL of the copper(II) sulfate - you only have 75.3 mL.

Number of moles or Reactant:

$$
\begin{gathered}
\frac{75.3 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.220 \mathrm{~mol} \mathrm{CuSO}_{4}}{L} \times \frac{1 \mathrm{~mol} \mathrm{PbSO}_{4}}{1 \mathrm{~mol} \mathrm{CuSO}_{4}}=0.016566 \mathrm{~mol} \mathrm{PbSO}_{4} \\
\Delta H
\end{gathered}
$$

