TOPIC 9: THERMODYNAMICS, PART A,

- Laws of Thermodynamics
- Enthalpy

Day 108:

Example \#1: An unknown metal, with a mass of 30 grams, is in a beaker of boiling water, at a temperature of $102{ }^{\circ} \mathrm{C}$, after a few minutes, the metal IS QUICKLY moved (and in our "perfect lab set-up" no heat was lost to the surroundings) to the calorimeter with 120 grams of water at a temperature of $19{ }^{\circ} \mathrm{C}$. After a small amount of time the temperature of the water in the calorimeter changed (and stopped changing) to $21.3^{\circ} \mathrm{C}$. What is the specific heat of the metal?

|  | $\mathrm{H}_{2} \mathrm{O}$ | Metal |
| :--- | :---: | :---: |
| m | 120 g | 30 g |
| $\mathrm{~T}_{\mathrm{i}}$ | $19^{\circ} \mathrm{C}$ | $102^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{f}}$ | $21.3^{\circ} \mathrm{C}$ | $21.3^{0} \mathrm{C}$ |
| c | 4.184 | $?$ |

$$
\begin{aligned}
& q_{\mathrm{H}_{2} \mathrm{O}}=m c \Delta T ; q_{\mathrm{H}_{2} \mathrm{O}}=(120 \mathrm{~g})\left(\frac{4.184 \mathrm{~J}}{g^{0} \mathrm{C}}\right)\left(21.3^{0} \mathrm{C}-19^{0} \mathrm{C}\right)=1154.784 \mathrm{~J} \\
& q_{\text {metal }}=m c \Delta T \quad ; q_{\text {metal }}=-1154.784 \mathrm{~J}=(30 \mathrm{~g})(c)\left(21.3^{0} \mathrm{C}-102^{0} \mathrm{C}\right) \\
& c_{\text {metal }}=\frac{-1154.784 \mathrm{~J}}{(30 \mathrm{~g})\left(21.3^{0} \mathrm{C}-102^{0} \mathrm{C}\right)}=0.477 \frac{\mathrm{~J}}{g^{0} \mathrm{C}}
\end{aligned}
$$

In this second type of sample, the enthalpy of a reaction can be determined from the heat of the reaction, which will take place at constant atmospheric pressure.

Example \#2, In this problem, 75.0 mL of $0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and 50.0 mL of 0.23 M HCl are mixed together. First, will this reaction occur? If so what is the NET equation of this reaction?

$$
\begin{gathered}
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}+2 \mathrm{HNO}_{3} \\
\text { (net) } \mathrm{Pb}^{+1}+2 \mathrm{Cl}^{-1} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}
\end{gathered}
$$

The initial temperature of the solution was $25^{\circ} \mathrm{C}$, and the final temperature was $25.8^{\circ} \mathrm{C}$. Determine the enthalpy, in $\mathrm{kJ} / \mathrm{mol}$, for the formation of the product (if there is one ???). The volume of the final solution was 125 mL , and it had a density of $1.05 \mathrm{~g} / \mathrm{mL}$. The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g}{ }^{0} \mathrm{C}$.

$$
\begin{gathered}
\frac{125 \mathrm{~mL}}{} \times \frac{1.05 \mathrm{~g}}{1 \mathrm{~mL}}=131.25 \mathrm{~g} \\
q_{\mathrm{H}_{2} \mathrm{O}}=(131.25 \mathrm{~g})\left(\frac{4.18 \mathrm{~J}}{g^{\circ} \mathrm{C}}\right)\left(25.8^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)=\frac{438.9 \mathrm{~J}}{} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=0.4389 \mathrm{~kJ}
\end{gathered}
$$

## Limiting Reactant STEP:

$\frac{75 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.10 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{L} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{\mathrm{L}}{0.23 \mathrm{~mol} \mathrm{HCl}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=65.2 \mathrm{~mL} \mathrm{HCl}$

There is ONLY 50 mL of HCl , there is NOT ENOUGH HCl to completely react with the $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, therefore HCl is the Limiting Reactant.

$$
\begin{gathered}
\frac{50 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.23 \mathrm{~mol} \mathrm{HCl}}{L} \times \frac{1 \mathrm{~mol} \mathrm{PbCl}}{2} \\
2 \mathrm{~mol} \mathrm{HCl}
\end{gathered}=0.00575 \mathrm{~mol} \mathrm{PbCl} l_{2}, ~\left(0.4389 \mathrm{~kJ}, 76 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right.
$$

