## AP CHEMISTRY

Topic 9: Thermodynamics, Part B,

- Hess's law
- Enthalpy of Formation
- Spontaneity
- Entropy
- Heat Capacity


## HEAT CAPACITY:

Heat capacity, $C_{p}$, is a measure of how much the temperature of an object is raised when it absorbs heat. An object with a large heat capacity can absorb a lot of heat without undergoing much of a change in temperature, whereas an object with a small heat capacity shows a large increases in temperature even if a small amount of heat is absorbed.

The equation that appears on your AP Chem equation sheet:

$$
C_{p}=\frac{\Delta H}{\Delta T} \quad \text { units: } \quad \frac{J}{{ }^{0} C}
$$

Example \#1: Calculate the heat capacity of an unknown substance, with an initial temperature of $23.3^{\circ} \mathrm{C}$, that was able to absorb 8735 joules of energy and its final temperature was $25.7^{\circ} \mathrm{C}$.

$$
C_{p}=\frac{\Delta H}{\Delta T}=\frac{8735 \mathrm{~J}}{\left(25.7^{0} \mathrm{C}-23.3^{0} \mathrm{C}\right)}=3640 \mathrm{~J}^{0} \mathrm{C}^{-1}
$$

Example \#2: . Determine the standard enthalpy of reaction for the combustion of hydrogen sulfide gas, which proceeds according to the reaction shown below:

$$
2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

The standard enthalpies for the constituents are as follows:

| Formula | $\Delta H_{f}^{0}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ |
| :---: | :---: |
| $\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$ | -20 |
| $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ | -285.8 |
| $\mathrm{SO}_{2(\mathrm{~g})}$ | -296.8 |

Answer:

$$
\begin{gathered}
\Delta H_{r \times n}^{0}=n \Delta H_{f}^{0} \text { (products) }-m \Delta H_{f}^{0} \text { (reactants) } \\
\Delta H_{r \times n}^{0}=[(2)(-285.8 \mathrm{~kJ})+(2)(-2896.8 \mathrm{~kJ})]-[(2)(20 \mathrm{~kJ})+0]=-1125.2 \mathrm{~kJ}
\end{gathered}
$$

Example \#3: Use the information shown above to determine the standard enthalpy change for the formation of nitrogen dioxide shown in the reaction below:

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

| Formula | $\Delta H^{0}{ }_{f}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ |
| :---: | :---: |
| $\mathrm{NO}_{(\mathrm{g})}$ | 90.37 |
| $\mathrm{O}_{2 \mathrm{~g})}$ | 0 |
| $\mathrm{NO}_{2(\mathrm{~g})}$ | 33.84 |

Answer:

$$
\Delta H_{r x n}^{0}=n \Delta H_{f}^{0} \text { (products) }-m \Delta H_{f}^{0} \text { (reactants) }
$$

$$
\Delta H_{r x n}^{0}=[(2)(33.84 \mathrm{~kJ})]-[(2)(90.37 \mathrm{~kJ})+0]=-113.06 \mathrm{~kJ}
$$

Example \#4: Calculate the enthalpy for the following reaction:

$$
\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} \Delta \mathrm{H}^{0}=? ? ? \mathrm{~kJ}
$$

Using the following two equations:

$$
\begin{array}{ll}
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})} & \Delta \mathrm{H}^{0}=+180 \mathrm{~kJ} \\
2 \mathrm{NO}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} & \Delta \mathrm{H}^{0}=+112 \mathrm{~kJ}
\end{array}
$$

Answer

$$
\begin{array}{cc}
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})} & \Delta \mathrm{H}^{0}=+180 \mathrm{~kJ} \\
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} & \Delta \mathrm{H}^{0}=-112 \mathrm{~kJ} \\
\hline \mathrm{~N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} \Delta \mathrm{H}^{0}=+68 \mathrm{~kJ}
\end{array}
$$

Example \#5: Calculate the enthalpy for the following reaction:

$$
2 \mathrm{~N}_{2(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \Delta \mathrm{H}^{0}=? ? ? \mathrm{~kJ}
$$

Using the following two equations:

$$
\begin{gathered}
\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}^{0}=-285.8 \mathrm{~kJ} \\
\mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{HNO}_{3(\mathrm{l})} \quad \Delta \mathrm{H}^{0}=-76.6 \mathrm{~kJ} \\
\frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{l})}+\frac{1}{2} \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{HNO}_{3(\mathrm{l})} \quad \Delta \mathrm{H}^{0}=-174.1 \mathrm{~kJ}
\end{gathered}
$$

Answer

$$
\begin{gathered}
2\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}\right) \quad \Delta \mathrm{H}^{0}=2(+285.8 \mathrm{~kJ})=+571.6 \mathrm{~kJ} \\
2\left(2 \mathrm{HNO}_{3(\mathrm{l})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right) \quad \Delta \mathrm{H}^{0}=2(+76.6 \mathrm{~kJ})=+153.3 \mathrm{~kJ} \\
4\left(\frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{l})}+\frac{1}{2} \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{HNO}_{3(\mathrm{l})}\right) \quad \Delta \mathrm{H}^{0}=4(-174.1 \mathrm{~kJ})=-696.4 \mathrm{~kJ} \\
\hline 2 \mathrm{~N}_{2(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \Delta \mathrm{H}^{0}=+28.5 \mathrm{~kJ}
\end{gathered}
$$

