AP CHEMISTRY

TOPIC 9: THERMODYNAMICS, PART B, EXAMPLES, PART II Day 109:

Hess's law
 Enthalpy of Formation
 Spontaneity
 Entropy
 Heat Capacity

HEAT CAPACITY:

Heat capacity, C_p , is a measure of how much the temperature of an object is raised when it absorbs heat. An object with a large heat capacity can absorb a lot of heat without undergoing much of a change in temperature, whereas an object with a small heat capacity shows a large increases in temperature even if a small amount of heat is absorbed.

The equation that appears on your AP Chem equation sheet:

$$C_p = \frac{\Delta H}{\Delta T}$$
 units: $\frac{J}{{}^0C}$

Example #1: Calculate the heat capacity of an unknown substance, with an initial temperature of 23.3 ^oC, that was able to absorb 8735 joules of energy and its final temperature was 25.7 ^oC.

$$C_p = \frac{\Delta H}{\Delta T} = \frac{8735 \ J}{(\ 25.7^{\circ}C - 23.3^{\circ}C)} = 3640 \ J^{\circ}C^{-1}$$

Example #2: Determine the standard enthalpy of reaction for the combustion of hydrogen sulfide gas, which proceeds according to the reaction shown below:

$$2 H_2 S_{(g)} + 3 O_{2(g)} \rightarrow 2 H_2 O_{(l)} + 2 SO_{2(g)}$$

The standard enthalpies for the constituents are as follows:

Formula	ΔH_{f}^{0} (kJ mol ⁻¹)		
$H_2 S_{(g)}$	- 20		
H ₂ O (1)	- 285.8		
$\mathrm{SO}_{2(g)}$	- 296.8		

Answer:

$$\Delta H^0_{rxn} = n \Delta H^0_f$$
 (products) - $m \Delta H^0_f$ (reactants)

$$\Delta H^{0}_{rxn} = [(2)(-285.8 \text{ kJ}) + (2)(-2896.8 \text{ kJ})] - [(2)(20 \text{ kJ}) + 0] = -1125.2 \text{ kJ}$$

Example #3: Use the information shown above to determine the standard enthalpy change for the formation of nitrogen dioxide shown in the reaction below:

 $2 \text{ NO}_{\text{(g)}} + \text{ O}_{2 \text{ (g)}} \rightarrow 2 \text{ NO}_{2 \text{ (g)}}$

Formula	ΔH_{f}^{0} (kJ mol ⁻¹)	
NO (g)	90.37	
O _{2 (g)}	0	
NO _{2 (g)}	33.84	

Answer:

 $\Delta H^{0}_{rxn} = n \Delta H^{0}_{f}$ (products) - $m \Delta H^{0}_{f}$ (reactants)

$$\Delta H^{0}_{rxn} = [(2)(33.84 \text{ kJ})] - [(2)(90.37 \text{ kJ}) + 0] = -113.06 \text{ kJ}$$

Example #4: Calculate the enthalpy for the following reaction:

$$N_{2(g)} + 2 O_{2(g)} \rightarrow 2 NO_{2(g)} \Delta H^0 = ??? kJ$$

Using the following two equations:

	$N_{2(g)} + O_{2(g)} \rightarrow 2 \text{ NO}_{(g)}$ 2 NO ₂ ($\rightarrow 2 \text{ NO}_{(a)} + O_{2(a)}$	$\Delta H^0 = +180 \text{ kJ}$ $\Delta H^0 = +112 \text{ kJ}$	
Answer	2 1102 (g) 7 2 110 (g) 7 02 (g)		
1115901	$N_{2(g)}$ + $O_{2(g)}$ \rightarrow 2 NO $_{(g)}$	$\Delta H^0 = +180 \text{ kJ}$	
	$2 \text{ NO}_{(g)} + \text{ O}_{2(g)} \rightarrow 2 \text{ NO}_{2(g)}$	$\Delta H^0 = -112 \text{ kJ}$	
	$N_{2(g)} + 2 O_{2(g)} \rightarrow 2 NO_{2(g)}$	_{g)} $\Delta H^0 = +68 \text{ kJ}$	

Example #5: Calculate the enthalpy for the following reaction:

$$2 N_{2(g)} + 5 O_{2(g)} \rightarrow 2 N_2 O_{5(g)} \Delta H^0 = ??? kJ$$

Using the following two equations:

$$\begin{aligned} H_{2(g)} + \frac{1}{2} O_{2(g)} \to H_2 O_{(l)} & \Delta H^0 = -285.8 \text{ kJ} \\ N_2 O_{5(g)} + H_2 O_{(l)} \to 2 \text{ HNO}_{3(l)} & \Delta H^0 = -76.6 \text{ kJ} \\ \frac{1}{2} N_{2(g)} + \frac{3}{2} O_{2(l)} + \frac{1}{2} H_{2(g)} \to \text{ HNO}_{3(l)} & \Delta H^0 = -174.1 \text{ kJ} \end{aligned}$$

Answer

$$2 (H_2O_{(1)} \rightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}) \Delta H^0 = 2(+285.8 \text{ kJ}) = +571.6 \text{ kJ}$$

$$2 (2 \text{ HNO}_{3(1)} \rightarrow N_2O_{5(g)} + H_2O_{(1)}) \Delta H^0 = 2(+76.6 \text{ kJ}) = +153.3 \text{ kJ}$$

$$4 (\frac{1}{2}N_{2(g)} + \frac{3}{2}O_{2(1)} + \frac{1}{2}H_{2(g)} \rightarrow \text{HNO}_{3(1)}) \Delta H^0 = 4(-174.1 \text{ kJ}) = -696.4 \text{ kJ}$$

$$2 N_{2(g)} + 5 O_{2(g)} \rightarrow 2 N_2O_{5(g)} \Delta H^0 = +28.5 \text{ kJ}$$