AP CHEMISTRY

Topic 10: NuCLEAR CHEMISTRY, PART B,
Day 118 :

- Half-life (Nuclear)

1. The half-life of Iodine- 125 is 60 days. If the original sample had a mass of 50.0 grams, how much remains after 360 days?

$$
\begin{gathered}
(\text { mass })_{\mathrm{t}}=(\text { mass })_{0}(0.5)^{\mathrm{n}} \quad \text { OR } \quad(\text { mass })_{\mathrm{t}}=(\text { mass })_{0}(1 / 2)^{\mathrm{n}} \\
n=\frac{360 \text { days }}{60 \text { days }}=6 \\
(\text { mass })_{\mathrm{t}}=(50.0 \text { grams })(0.5)^{6}=0.781 \text { grams }
\end{gathered}
$$

OR

$$
\begin{aligned}
& \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \quad ; \quad \frac{\ln (0.5)}{-t_{1 / 2}}=k=\frac{\ln (0.5)}{-60 \text { days }}=0.011552 \frac{1}{\text { days }} \\
& \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \quad ; \quad \ln \left(\frac{[A]_{t}}{50 \mathrm{~g}}\right)=-\left(0.011552 \frac{1}{\text { days }}\right)(360 \text { days })
\end{aligned}
$$

$$
\ln \left(\frac{[A]_{t}}{50 g}\right)=-4.158883083
$$

$$
e^{\ln \left(\frac{[A]_{t}}{50 g}\right)}=e^{-4.158883083}
$$

$$
; \quad \frac{[A]_{t}}{50 g}=0.015625
$$

$$
[A]_{t}=(0.015625)(50 \mathrm{~g})=0.781 \mathrm{~g}
$$

2. Titanium-51 has a half-life of 6 minutes. If 98.0 grams of the material are obtained initially, how many grams of the sample will remain after one hour?

$$
\begin{gathered}
(\text { mass })_{\mathrm{t}}=(\text { mass })_{0} \times 0.5^{\mathrm{n}} \\
n=\frac{60 \mathrm{~min}}{6 \mathrm{~min}}=10 \\
(\text { mass })_{\mathrm{t}}=(98.0 \text { grams })\left(0.5^{10}\right)=0.0957 \text { grams }
\end{gathered}
$$

OR

$$
\begin{gathered}
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \quad ; \quad \frac{\ln (0.5)}{-t_{1 / 2}}=k=\frac{\ln (0.5)}{-6 \min }=0.11552 \frac{1}{\min } \\
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \quad ; \quad \ln \left(\frac{[A]_{t}}{98 g}\right)=-\left(0.11552 \frac{1}{\min }\right)(60 \mathrm{~min}) \\
\ln \left(\frac{[A]_{t}}{98.0 \mathrm{~g}}\right)=-6.931472 \\
e^{\ln \left(\frac{[A]_{t}}{98.0 \mathrm{~g}}\right)}=e^{-6.931472} \quad ; \quad \frac{[A]_{t}}{98.0 \mathrm{~g}}=0.000976532
\end{gathered}
$$

$$
[A]_{t}=(0.000976532)(98.0 \mathrm{~g})=0.0957 \mathrm{~g}
$$

3. The half-life of phosphorus- 30 is 2.5 min . What percent of phosphorus- 30 nuclides would remain after 14 min ?
$\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \quad ; \quad \frac{\ln (0.5)}{-t_{1 / 2}}=k=\frac{\ln (0.5)}{-2.5 \mathrm{~min}}=0.27725887 \frac{1}{\min }$
Start with ANY amount - I like 100 grams

$$
\begin{aligned}
& \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \quad ; \quad \ln \left(\frac{[A]_{t}}{100 g}\right)=-\left(0.27725887 \frac{1}{\min }\right)(14 \mathrm{~min}) \\
& \ln \left(\frac{[A]_{t}}{100 g}\right)=-3.8816242 \\
& e^{\ln \left(\frac{[A]_{t}}{100 g}\right)}=e^{-3.8816242}=0.020617311
\end{aligned}
$$

$$
\frac{[A]_{t}}{100 g}=0.020617311 \quad[A]_{t}=(0.020617311)(100 \mathrm{~g})=2.06 \mathrm{~g}
$$

$$
\frac{2.06 g}{100 g} \times 100 \%=2.06 \%
$$

OR

$$
(\mathrm{mass})_{\mathrm{t}}=(\mathrm{mass})_{0} \times(0.5)^{\mathrm{n}}
$$

All we are concerned with is the percent, so use only $(0.5)^{\mathrm{n}}$ portion of the equation:

$$
\begin{gathered}
n=\frac{14 \mathrm{~min}}{2.5 \mathrm{~min}}=5.6 \\
(0.5)^{5.6}=0.020617311
\end{gathered}
$$

percent is equal to:

$$
0.020617311 \times 100 \%=2.06 \%
$$

4a. If a 1.0×10^{-3} gram sample of technetium-99 has a decay rate 6.3×10^{5} nuclei sec ${ }^{-1}$, what is its decay constant?

$$
\begin{gathered}
\text { Rate }=k N_{t} \\
\frac{1.0 \times 10^{-3} \mathrm{gram} \mathrm{Tc}}{} \times \frac{1 \mathrm{~mol} \mathrm{Tc}}{99 \text { grams }} \times \frac{6.022 \times 10^{23} \text { nuclei }}{1 \mathrm{~mol} \mathrm{Tc}}=6.08 \times 10^{18}{ }_{43}^{99} \text { Tc nuclei } \\
k=\frac{\text { Rate }}{N_{t}}=\frac{6.3 \times 10^{5} \text { nuclei } \mathrm{sec}^{-1}}{6.08 \times 10^{18} \text { nuclei }}=1.036 \times 10^{-13} \mathrm{sec}^{-1}
\end{gathered}
$$

4b. What is the half-life of technetium-99?

$$
\begin{gathered}
k=1.036 \times 10^{-13} \mathrm{sec}^{-1} \\
t_{1 / 2}=\frac{\ln (0.5)}{-k}=\frac{\ln (0.5)}{-1.036 \times 10^{-13} \mathrm{sec}^{-1}}=6.69 \times 10^{12} \mathrm{sec}
\end{gathered}
$$

5. How many half-lives have elapsed if a substance with an initial mass of 35.6 grams currently has a mass of 1.75 grams after 6.44 hours? (4.35 half-lives)

$$
\begin{gathered}
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \quad ; \frac{\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)}{-t}=k \quad ; \quad \frac{\ln \left(\frac{1.75 \mathrm{~g}}{35.6 \mathrm{~g}}\right)}{-6.44 \mathrm{hrs}}=k=0.4678152 \frac{1}{\mathrm{hrs}} \\
\frac{\ln (0.5)(\mathrm{hrs})}{-0.4678152}=t_{1 / 2}=1.48166807 \text { hrs } \\
n=\frac{6.44 \mathrm{hrs}}{1.48166807 \mathrm{hrs}}=4.35=\text { number of half - lives }
\end{gathered}
$$

