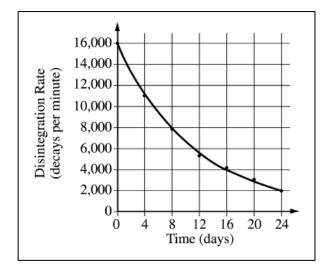
AP CHEMISTRY

TOPIC 10: NUCLEAR CHEMISTRY, REVIEW, PART I

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS

A CALCULATOR **SHOULD NOT** BE USED FOR QUESTION #1:

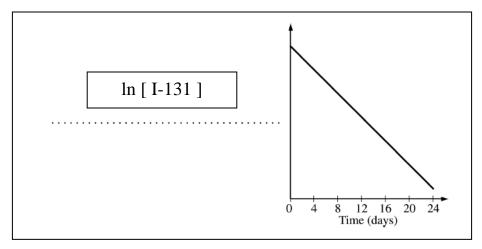

1. The decay of the radioisotope I-131 was studied in a laboratory. I-131 is known to decay to beta $\begin{pmatrix} 0 \\ -1 \end{pmatrix} e$) emission. a) Write a balanced nuclear equation for the decay of I-131.

$$^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}e$$

b) What is the source of the beta particle emitted from the nucleus?

A neutron is converted into a proton as a result of this action, an electron is ejected from the nucleus .

The radioactivity of a sample of I-131 was measured. The data collected are plotted on the graph below.



c) Determine the half-life, $t_{1/2}$, of I-131 using the graph above. Explain

The half-life is 8 days.

The time required for the disintegration rate to fall from 16,000 to one-half its initial value (8,000).

d) The data can be used to show that the decay of I-131 is a first-order reaction, as indicated on the graph below.

- (i) Label the vertical axis of the graph abovc.
- (ii) What are the units of the rate constant, k, for the decay reaction?

days ⁻¹ OR
$$\frac{1}{days}$$
 OR time ⁻¹ OR $\frac{1}{time}$

(iii) Explain how the half-life of I-131 can be calculated using the slope of the line plotted on the graph.

The slope of the line is -k. The slope is negative,. The half-life can then be calculated using the relationship:

$$t_{1/2} = \frac{\ln(0.5)}{-k}$$

(iv) Compare the value of the half-life of I-131 at 25° C to its value at 50° C.

The half-life value will be the same at different temperatures. The half-life of a nuclear decay process is independent of temperature (unlike chemical reactions)