AP CHEMISTRY

Topic 12: Solutions, Review, Part I

1. Lead(II) bromide dissociates in water and has a $K_{s p}=4.6 \times 10^{-6}$ at $25^{\circ} \mathrm{C}$
a) Write the chemical dissociation equation for the above dissociation.

$$
\mathrm{PbBr}_{2} \leftrightarrow \mathrm{~Pb}^{+2}+2 \mathrm{Br}^{-1}
$$

b) Write the equilibrium expression

$$
K_{s p}=\left[\mathrm{Pb}^{+2}\right]\left[\mathrm{Br}^{-1}\right]^{2}
$$

c) Calculate the concentration, in mol L^{-1} of the bromide ions in a saturated solution of lead(II) bromide at $25^{0} \mathrm{C}$.

	PbBr_{2}	\leftrightarrow	$\mathrm{~Pb}^{+2}$	+	$2 \mathrm{Br}^{-1}$
I	-		0		0
C	-		$+x$		$+2 x$
E	-		x		$2 x$

$$
\begin{gathered}
4.6 \times 10^{-6}=\left[\mathrm{Pb}^{+2}\right]\left[\mathrm{Br}^{-1}\right]^{2} \\
4.6 \times 10^{-6}=[x][2 x]^{2}=4 x^{3} \\
x=1.05 \times 10^{-2} M=\left[\mathrm{Pb}^{+2}\right] \\
{\left[\mathrm{Br}^{-1}\right]=2 x=(2)\left(1.05 \times 10^{-2} M\right)=2.10 \times 10^{-2} M}
\end{gathered}
$$

d) Calculate the maximum mass, in grams, of lead(II) bromide that can dissolve in 4297 mL of water at $25^{\circ} \mathrm{C}$.

$$
\frac{4297 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1.05 \times 10^{-2} \mathrm{~mol} \mathrm{~Pb}^{+2}}{L} \times \frac{1 \mathrm{~mol} \mathrm{PbBr}_{2}}{1 \mathrm{~mol} \mathrm{~Pb}^{+2}} \times \frac{367 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{PbBr}_{2}}=16.6 \mathrm{~g}
$$

2. In a saturated solution of silver phosphate at $25^{\circ} \mathrm{C}$, the concentration of $\mathrm{PO}_{4}^{-3}(\mathrm{aq})$ is $1.6069 \times 10^{-5} \mathrm{M}$. The equilibrium constant expression for the dissolving of silver phosphate in water is shown below:

$$
K_{s p}=\left[\mathrm{Ag}^{+1}\right]^{3}\left[\mathrm{PO}_{4}^{-3}\right]
$$

a) Write the balanced equation for the dissolving of silver phosphate in water.

$$
\mathrm{Ag}_{3} \mathrm{PO}_{4} \leftrightarrow 3 \mathrm{Ag}^{+1}+\mathrm{PO}_{4}^{-3}
$$

b) Calculate the value of $K_{s p}$ for silver phosphate at $25^{\circ} \mathrm{C}$.

	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	\leftrightarrow	$3 \mathrm{Ag}^{+1}$	+	$\mathrm{PO}_{4}{ }^{-3}$
I	-		0		0
C	-		$+3 x$		$+x$
E	-		$3 x$		x

$$
\begin{gathered}
{\left[\mathrm{PO}_{4}^{-3}\right]=1.6069 \times 10^{-5} \mathrm{M}=x} \\
{\left[\mathrm{Ag}^{+1}\right]=\frac{1.6069 \times 10^{-5} \mathrm{~mol}}{L} \times \frac{3 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{PO}_{4}^{-3}}=4.821 \times 10^{-5} \mathrm{M}=3 x} \\
K_{s p}=\left(4.821 \times 10^{-5}\right)^{3}\left(1.6069 \times 10^{-5}\right)=1.8 \times 10^{-18}
\end{gathered}
$$

3. A solution is prepared by dissolving 144 grams barium hydroxide $\left(K_{s p}=5.0 \times 10^{-3}\right)$ in 3500 mL of water.

Calculate the freezing point of this solution. (Hint: you have a $K_{s p}$ value which indicates that the salt is NOT strong and that this salt does not dissociate to 100% - calculate the number of moles that do dissociate.)

$$
K_{s p}=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{OH}^{-1}\right]^{2}
$$

	$\mathrm{Ba}(\mathrm{OH})_{2}$	\rightleftharpoons	Ba^{+2}	+	$2 \mathrm{OH}^{-1}$
I	-		0		0
C	-		$+x$		$+2 x$
E	-		x		$2 x$

$$
5.0 \times 10^{-3}=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{OH}^{-1}\right]^{2}
$$

$$
5.0 \times 10^{-3}=[x][2 x]^{2}=4 x^{3}
$$

$$
\frac{5.00 \times 10^{-3}}{4}=0.00125 ; x=\sqrt[3]{0.00125}=0.10772=\left[B a^{+2}\right]
$$

$\frac{3500 \mathrm{~mL}_{\mathrm{H}_{2} \mathrm{O}}}{} \times \frac{1 g_{\mathrm{H}_{2} \mathrm{O}}}{1 m L_{\mathrm{H}_{2} \mathrm{O}}} \times \frac{1 \mathrm{~kg}_{\mathrm{H}_{2} \mathrm{O}}}{1000 g_{\mathrm{H}_{2} \mathrm{O}}} \times \frac{0.10772 \mathrm{~mol} \mathrm{Ba}}{1 \mathrm{~kg}_{\mathrm{H}_{2} \mathrm{O}}} \times \frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{Ba}^{+2}}=0.377 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$

$$
\Delta T_{f}=i k_{f} \text { molality } ; \Delta T_{f}=(3)\left(\frac{1.86 \mathrm{~kg}}{\mathrm{~mol}}\right)\left(\frac{0.3770 \mathrm{~mol}}{3.50 \mathrm{~kg}}\right)=0.601^{\circ} \mathrm{C}
$$

$$
\text { F.P. for water }=0^{\circ} \mathrm{C}-0.601{ }^{\circ} \mathrm{C}=-0.601{ }^{\circ} \mathrm{C}
$$

You do NOTHING with the 144 grams... This is to "distract you" - focus on WHAT the question is asking... This IS a past AP Exam question...
4. A solution containing 365.3 grams of a electrolyte (that dissociates into four particles) dissolved in 1200 grams of water boils at $107.44^{\circ} \mathrm{C}$. Calculate the approximate molecular weight of the solute.

$$
\begin{gathered}
\Delta T_{b}=107.44^{0} \mathrm{C}-100^{\circ} \mathrm{C}=7.44^{\circ} \mathrm{C} \\
1200 \text { grams }=1.20 \text { kilograms } \\
\Delta T_{b}=i \mathrm{~kb}_{b} \text { molality } \\
7.44{ }^{\circ} \mathrm{C}=\frac{(4) 0.51^{\circ} \mathrm{C} \cdot \mathrm{~kg}}{(\mathrm{~mol})}\left(\frac{? \mathrm{~mol}}{1.2 \mathrm{~kg}}\right) \\
? \mathrm{~mol}=\frac{\left(7.44{ }^{\circ} \mathrm{C}\right)\left(1.2 \mathrm{~kg}_{\mathrm{H}_{2} \mathrm{O}}\right)(\mathrm{mol})}{(4)\left(0.51^{\circ} \mathrm{C} \cdot \mathrm{~kg}\right)}=4.376 \mathrm{~mol} \\
\text { molecular weight }=\frac{365.3 \mathrm{~g} \text { solute }}{4.376 \mathrm{~mol} \text { solute }}=83.5 \frac{\mathrm{~g}}{\mathrm{~mol}}
\end{gathered}
$$

5. What mass of aluminum perchlorate must be dissolved in 3.53 kg of water to give a solution with a freezing point of $-13.33{ }^{0} \mathrm{C}$?

$$
\begin{gathered}
\Delta T_{f}=(4)\left(1.86^{\circ} \mathrm{C} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right)(\text { molality })=13.33^{\circ} \mathrm{C} \\
13.33{ }^{\circ} \mathrm{C}=\frac{(4) 1.86^{\circ} \mathrm{C} \cdot \mathrm{~kg}}{(\mathrm{~mol})}\left(\frac{? \mathrm{~mol}}{3.53 \mathrm{~kg}}\right) \\
\text { moles }=\frac{\left(13.33{ }^{\circ} \mathrm{C}\right)\left(3.53 \mathrm{~kg}_{\mathrm{H}_{2} \mathrm{O}}\right)(\mathrm{mol})}{(4)\left(1.86^{0} \mathrm{C} \cdot \mathrm{~kg}\right)}=6.32458 \mathrm{~mol} \\
\frac{6.32458 \mathrm{~mol}}{} \times \frac{325.33 \mathrm{~g}}{\mathrm{~mol}}=2.06 \times 10^{3} \mathrm{~g} \mathrm{Al}\left(\mathrm{ClO}_{4}\right)_{3}
\end{gathered}
$$

