AP CHEMISTRY

Topic 3: Gases, Part A
Day 34:

- Boyle, Charles, and Avogadro: Gas Laws
- Ideal Gas Law

1) Explain how Mr. Craig was able to place the balloon in the flask (as shown in class).

Answers:

Place a small amount of water in the flask and heat the water to its boiling point. Once the water is forming a vapor, quickly remove the flask from the heat source and place a balloon over the opening of the flask and quickly cool the flask with cool tap water. As the water vapor cools, the volume of the gas is quickly compressed into a smaller volume AND reducing the pressure of the gas inside the flask. When this happens the atmospheric pressure "pushes" the balloon into the flask.
2) Freon-12 $\left(\mathrm{CF}_{2} \mathrm{Cl}_{2}\right)$ is commonly used as the refrigerant in central home air conditioners. The system is initially charged to a pressure of 4.75 atm . Express this pressure in each of the following units:
a) mm Hg
b) torr
c) kPa

Answers:
a) $\frac{4.75 \mathrm{~atm}}{} \times \frac{760 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~atm}}=3610 \mathrm{~mm} \mathrm{Hg}$
b) $\frac{4.75 \mathrm{~atm}}{} \times \frac{760 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~atm}} \times \frac{1 \mathrm{torr}}{1 \mathrm{~mm} \mathrm{Hg}}=3610$ torr
c) $\frac{4.75 \mathrm{~atm}}{} \times \frac{101.325 \mathrm{kPa}}{1 \mathrm{~atm}}=481 \mathrm{kPa}$
3) An aerosol can contains 320 . mL of compressed air at 4.75 atm of pressure. When all of the gas is sprayed into a balloon, the balloon inflates to a volume of 3.87 liters. What is the pressure inside the balloon. Assume the temperature remains constant.

Answers:

$$
\boldsymbol{P}_{1} \boldsymbol{V}_{\mathbf{1}}=\boldsymbol{P}_{2} \boldsymbol{V}_{\mathbf{2}} ; \quad P_{2}=\frac{P_{1} V_{1}}{V_{2}}=\frac{(4.75 \mathrm{~atm})(0.320 \mathrm{~L})}{3.87 \mathrm{~L}}=0.393 \mathrm{~atm}
$$

4) If 3.56 mol of nitrogen gas occupies a volume of 16.75 L at $7.50^{\circ} \mathrm{C}$, what volume will 9.00 mol of nitrogen occupy at the same temperature?

Answers:

$$
\begin{aligned}
& P V_{1}=n_{1} R T \\
& P V_{2}=n_{2} R T
\end{aligned}
$$

$$
V_{2}=\frac{V_{1} n_{2}}{n_{1}}=\frac{(16.75 \mathrm{~L})(9.00 \mathrm{~mol})}{3.56 \mathrm{~mol}}=42.3 \mathrm{~L}
$$

5) A particular balloon is designed by its manufacturer to be inflated to a volume of no more than 2.5 L . If the balloon is filled 2.0 L of helium gas at sea level, is released, and rises to an altitude at which the atmospheric pressure is only $500 . \mathrm{mm} \mathrm{Hg}$, will the balloon burst? (assume the temperature remains constant)

Answers:

The balloon will burst. The volume will exceed manufacture's design restraints
$P_{1} V_{1}=n R T$
$P_{2} V_{2}=n R T$
$\boldsymbol{P}_{1} \boldsymbol{V}_{1}=\boldsymbol{P}_{2} \boldsymbol{V}_{2} ; \quad V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{(1.0 \mathrm{~atm})(2.0 \mathrm{~L})}{0.658 \mathrm{~atm}}=3.0 \mathrm{~L}$
6) A compressed gas cylinder contains 1.35×10^{4} grams of helium gas. The pressure inside the cylinder is 4870 kPa at a temperature of $15.0^{\circ} \mathrm{C}$. How much gas remains in the cylinder if the pressure is decreased to 2320 kPa at a temperature of $22.0^{\circ} \mathrm{C}$?

Answers:

$$
\begin{aligned}
& P_{1} V=n_{1} R T_{1} \\
& P_{2} V=n_{2} R T_{2}
\end{aligned}
$$

$$
\frac{1.35 \times 10^{4} \mathrm{~g}}{4.0026 \mathrm{~g}}=3372.81 \mathrm{~mol} \mathrm{He}
$$

$$
15.0+273=288 \mathrm{~K}, \quad 22.0+273=295 \mathrm{~K}
$$

$$
\frac{n_{1} T_{1}}{P_{1}}=\frac{n_{2} T_{2}}{P_{2}}
$$

$$
n_{2}=\frac{P_{2} n_{1} T_{1}}{P_{1} T_{2}}=\frac{(2320 \mathrm{kPa})(3372.81 \mathrm{~mol})(288 \mathrm{~K})}{(4870 \mathrm{kPa})(295 \mathrm{~K})}=1570 \mathrm{~mol}
$$

7) Complete tne $\begin{aligned} & \text { oriowing tade: }\end{aligned}$

$\mathrm{P}(\mathrm{atm})$	$\mathrm{V}(\mathrm{L})$	$\mathrm{n}(\mathrm{mol})$	T
7.45	$\mathbf{1 4 . 4} \mathbf{L}$	3.22	$133^{\circ} \mathrm{C}$
$\mathbf{1 . 7 8} \mathbf{~ a t m}$	35.24	2.22	345 K
$800 . \mathrm{mm} \mathrm{Hg}$	2386 mL	$\mathbf{0 . 0 5 7 8} \mathbf{~ m o l}$	$255^{\circ} \mathrm{C}$

$$
V=\frac{n R T}{P}=\frac{(3.22 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(406 \mathrm{~K})}{(7.45 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=14.4 \mathrm{~L}
$$

$$
P=\frac{n R T}{V}=\frac{(2.22 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(345 \mathrm{~K})}{(35.42 \mathrm{~L})(\mathrm{mol} \cdot \mathrm{~K})}=1.78 \mathrm{~atm}
$$

$$
n=\frac{P V}{R T}=\frac{(1.05 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(2.386 \mathrm{~L})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(528 \mathrm{~K})}=0.0578 \mathrm{~mol}
$$

