AP CHEMISTRY

Topic 3: Gases, Part A,
EXAMPLE PROBLEMS
Day 34:

- Boyle, Charles, and Avogadro: Gas Laws
- Ideal Gas Law

1) During Hurricane Katrina, the atmospheric pressure (barometric pressure) within the eye dropped to 27.33 inches of mercury. Express this pressure in each of the following units:
a) mm Hg
b) atm
c) kPa
d) torr

$$
\begin{gathered}
\frac{27.33 \mathrm{in} \mathrm{Hg}}{} \times \frac{2.54 \mathrm{~cm} \mathrm{Hg}}{1 \mathrm{in} \mathrm{Hg}} \times \frac{10 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~cm} \mathrm{Hg}}=694 \mathrm{~mm} \mathrm{Hg} \\
\frac{27.33 \mathrm{in} \mathrm{Hg}}{} \times \frac{2.54 \mathrm{~cm} \mathrm{Hg}}{1 \text { in Hg}} \times \frac{10 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~cm} \mathrm{Hg}} \times \frac{1 \mathrm{~atm}}{760 \mathrm{~mm} \mathrm{Hg}}=0.913 \mathrm{~atm} \\
\frac{27.33 \mathrm{in} \mathrm{Hg}}{} \times \frac{2.54 \mathrm{~cm} \mathrm{Hg}}{1 \mathrm{in} \mathrm{Hg}} \times \frac{10 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~cm} \mathrm{Hg}} \times \frac{1 \mathrm{kPa}}{7.501 \mathrm{~mm} \mathrm{Hg}}=92.5 \mathrm{kPa} \\
\underline{27.33 \mathrm{in} \mathrm{Hg}} \times \frac{2.54 \mathrm{~cm} \mathrm{Hg}}{1 \text { in Hg}} \times \frac{10 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~cm} \mathrm{Hg}} \times \frac{1 \text { torr }}{1 \mathrm{~mm} \mathrm{Hg}}=694 \text { torr }
\end{gathered}
$$

2) The volume of a balloon is 485 mL when filled with 0.0222 moles of helium gas fills at temperature of $20.0^{\circ} \mathrm{C}$. What is the pressure that the helium atoms are exerting on the sides of this balloon?

$$
\begin{gathered}
P V=n R T \\
\frac{485 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.485 \mathrm{~L} ; 20.0^{0} \mathrm{C}+273=293 \mathrm{~K} ; \\
R=0.0821 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
P=\frac{n R T}{V}=\frac{(0.0222 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(293 \mathrm{~K})}{(0.485 \mathrm{~L})(\mathrm{mol} \cdot \mathrm{~K})}=1.10 \mathrm{~atm}
\end{gathered}
$$

3) When 5.27 moles of nitrogen gas at 745 mm Hg of pressure at a volume of 2.00 L is compressed to a new pressure of 300 kPa - what will be the new volume for the nitrogen?

$$
\frac{745 \mathrm{~mm} \mathrm{Hg}}{} \times \frac{1 \mathrm{kPa}}{7.501 \mathrm{~mm} \mathrm{Hg}}=99.32 \mathrm{kPa}
$$

4) Determine the temperature of the gas if a sample of oxygen gas with an original volume of 4.55 liters and at a temperature of $-45^{\circ} \mathrm{C}$ has its volume reduced to 2.00 liters.

$\begin{aligned} & \hline \mathrm{P}_{1}=\mathrm{P}_{2} \\ & \mathrm{~V}_{1}=4.55 \mathrm{~L} \\ & \mathrm{n}_{1}=\mathrm{n}_{2} \\ & \mathrm{~T}_{1}=-45^{\circ} \mathrm{C} \\ & \hline \mathrm{P}_{2}=\mathrm{P}_{1} \\ & \mathrm{~V}_{2}=2.00 \mathrm{~L} \\ & \mathrm{n}_{2}=\mathrm{n}_{1} \\ & \mathrm{~T}_{2}=? \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{PV} \\ & 1\end{aligned}=\mathrm{nRT}_{1}{ }^{\text {PV}}=\mathrm{nRT}_{2}$	$-45^{0} \mathrm{C}+273=228 \mathrm{~K}$
	$\mathrm{PV} \mathrm{S}_{1}=\mathrm{nRT}_{1} ; P=\frac{n R T_{1}}{V_{1}} ; \frac{P}{n R}=\frac{T_{1}}{V_{1}} ; \frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}}$	
	$\begin{gathered} \frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}} \\ T_{2}=\frac{T_{1} V_{2}}{V_{1}}=\frac{(228 \mathrm{~K})(2.00 \mathrm{~L})}{4.55 \mathrm{~L}}=100 . \mathrm{K} \end{gathered}$	

