AP CHEMISTRY

Topic 3: Gases, Part B
Day 35:

- Gas Stoichiometry
- Gas Density

1) A student adds 3.50 grams of dry ice $\left(\mathrm{CO}_{2}\right)$ to a empty balloon. What will be the new volume of the balloon at STP after all the dry ice sublimes?

Answers:

Original Volume of balloon will be zero (no gas within the balloon when CO_{2} was a solid)

$$
\begin{aligned}
& \boldsymbol{P} \boldsymbol{V}=\boldsymbol{n} \boldsymbol{R T} ; \quad V=\frac{n R T}{P} \\
& n=\frac{3.50 \mathrm{~g} \mathrm{CO}_{2}}{} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.011 \mathrm{~g}}=0.07953 \mathrm{~mol} \mathrm{CO}_{2} \\
& V=\frac{(0.07953 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(273 \mathrm{~K})}{(1 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=1.78 \mathrm{~L}
\end{aligned}
$$

2) What volume of carbon dioxide gas is generated by decomposing 325 grams of sea shells, CaCO_{3}, into calcium oxide and carbon dioxide at a temperature of $330^{\circ} \mathrm{C}$ and at a pressure of 1.22 atm ?

Answers:

$$
\begin{aligned}
& \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \\
& n=\frac{325 \mathrm{~g} \mathrm{CaCO}_{3}}{} \times \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{100.091 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}=3.247 \mathrm{~mol} \mathrm{CO} 2 \\
& \boldsymbol{P V}=\boldsymbol{n R T} ; \quad V=\frac{n R T}{P} \\
& V=\frac{(3.247 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(603 \mathrm{~K})}{(1.22 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=130 \mathrm{~L}
\end{aligned}
$$

3) Air bags are activated when a severe impact causes a steel ball to compress a spring and electrically ignite a detonator cap. This causes sodium azide $\left(\mathrm{NaN}_{3}\right)$ to decompose explosively according to the following reaction:

$$
2 \mathrm{NaN}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2(\mathrm{~g})}
$$

What mass of $\mathrm{NaN}_{3(\mathrm{~s})}$ must be reacted to inflate an air bag to 70.0 liters at STP?

$$
\begin{aligned}
& \boldsymbol{P V}=\boldsymbol{n} \boldsymbol{R T} ; \quad n=\frac{P V}{R T} \\
& n=\frac{(1 \mathrm{~atm})(70.0 \mathrm{~L})(\mathrm{mol} \cdot \mathrm{~K})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(273 \mathrm{~K})}=3.123 \mathrm{~mol} \mathrm{~N}_{2} \\
& \frac{3.123 \mathrm{~mol} \mathrm{~N}}{2} 2\left(2 \mathrm{~mol} \mathrm{NaN}_{3}\right) ~ 2.082 \mathrm{~mol} \mathrm{NaN} \\
& \text { mass }=\frac{2.082 \mathrm{~mol} \mathrm{NaN}}{3} 10 \frac{65.011 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{NaN}_{3}}=135 \mathrm{~g} \mathrm{NaN}_{3}
\end{aligned}
$$

4) A sample of propane gas, $\mathrm{C}_{3} \mathrm{H}_{8}$, having a volume of 4.88 liters at $85^{\circ} \mathrm{C}$ and 2.19 atm was mixed with a sample of oxygen gas with a volume of 20.2 liters at $78{ }^{\circ} \mathrm{C}$ an 1.87 atm . The mixture was then ignited to form carbon dioxide and water. Calculate the volume of CO_{2} formed at a pressure of 2.75 atm and a temperature of $230^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\boldsymbol{C}_{3} \boldsymbol{H}_{8}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathbf{O}+3 \mathrm{CO}_{2} \\
n_{\text {propane }}=\frac{P V}{R T}=\frac{(2.19 \mathrm{~atm})(4.88 \mathrm{~L})(\mathrm{mol} \cdot \mathrm{~K})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(358 \mathrm{~K})}=0.3636 \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} H_{8} \\
n_{\text {oxygen }}= \\
\frac{P V}{R T}=\frac{(1.87 \mathrm{~atm})(20.2 \mathrm{~L})(\mathrm{mol} \cdot \mathrm{~K})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(351 \mathrm{~K})}=1.3108 \mathrm{~mol} \mathrm{O} \\
2
\end{gathered}
$$

O_{2} is the limiting reactant, All Oxygen is consumed - extra propane.

$$
\begin{gathered}
\frac{1.3108 \mathrm{~mol} \mathrm{O}_{2}}{} \times \frac{3 \mathrm{~mol} \mathrm{CO}}{2 \mathrm{~mol} \mathrm{O}}=0.78648 \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{8} \\
\boldsymbol{P V}=\boldsymbol{n} \boldsymbol{R} \boldsymbol{T} ; \quad V=\frac{n R T}{P} \\
V=\frac{(0.78648 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot L)(503 \mathrm{~K})}{(2.75 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=12 \mathrm{~L} \mathrm{CO}
\end{gathered}
$$

5) The density of a gas was measured at 2.78 atm and $39.3^{\circ} \mathrm{C}$ and found to be $2.33 \mathrm{~g} / \mathrm{L}$. Calculate the molar mass of this gas.

Answers:

$$
\begin{gathered}
P V=n R T \\
P V=\frac{m}{M} R T \\
M=\frac{m}{V} \times \frac{R T}{P} ; D e n s i t y=\frac{m}{V} \\
M=\frac{2.33 \mathrm{~g}}{L} \times \frac{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(312.3 \mathrm{~K})}{(2.78 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=21.5 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

6) Air is a mixture of about 21.0% oxygen gas and 79.0% nitrogen gas (we'll neglect the minor components and water vapor in this question). What is the density of air at $30.0^{\circ} \mathrm{C}$ and 1.00 atm ?

Answers:

$$
\begin{gathered}
\text { Molar Mass of Air }=21 \% \text { is } \boldsymbol{O}_{2} \text { and } 79 \% \text { is } \boldsymbol{N}_{2} \\
(\text { molar mass })_{A I R}=(0.21)\left(32.0 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+(0.79)\left(28.014 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=28.85106 \frac{\mathrm{~g}}{\mathrm{~mol}} \\
P V=n R T \\
P V=\frac{\mathrm{m}}{M} R T \\
\text { Density }_{\text {Air }}=\frac{m}{V}=\frac{P M}{R T} \\
\text { Density }_{\text {Air }}=\frac{(1.00 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(28.85106 \mathrm{~g})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(303 \mathrm{~K})(\mathrm{mol})}=1.16 \mathrm{~g} \mathrm{~L}
\end{gathered}
$$

