- Gas Stoichiometry
- Gas Density

1) Calculate the volume occupied by 2.5 moles of an ideal gas at STP.

$$
\begin{gathered}
P V=n R T ; V=\frac{n R T}{P}=\frac{(2.5 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(273 \mathrm{~K})}{(1 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=56 \mathrm{~L} \\
\text { OR }
\end{gathered}
$$

$$
@ \text { STP; P = } \mathbf{1} \mathbf{~ a t m}, \mathbf{T}=273 \mathbf{K} \text { or } \mathbf{0}^{0} \mathbf{C} \quad \frac{2.5 \mathrm{~mol}}{} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=56 \mathrm{~L}
$$

2) The density of a gas was measured at 4.97 atm and $96.2^{\circ} \mathrm{C}$ and found to be $0.873 \mathrm{~g} / \mathrm{L}$. Calculate the molar mass of this gas.

$$
\begin{array}{ll}
P V=n R T ; n=\frac{m}{M} \\
P V=\frac{m}{M} R T & \\
P V=\frac{m}{M} R T & \\
M=\frac{m R T}{P V} \quad D=\frac{m}{V}
\end{array}
$$

$$
M=\left(\frac{m}{V}\right) \frac{R T}{P}=\left(\frac{0.873 \mathrm{~g}}{L}\right)\left(\frac{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(369.2 \mathrm{~K})}{(\mathrm{mol} \cdot \mathrm{~K})(4.97 \mathrm{~atm})}\right)=5.32 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

3) $\quad \mathrm{HCl}_{(\mathrm{g})}$ can be prepared by reacting NaCl with $\mathrm{H}_{2} \mathrm{SO}_{4}$. What mass solid NaCl is required to prepare enough HCl to fill a 340 . mL cylinder to a pressure of 151 atm at $20.0^{\circ} \mathrm{C}$?

Gas Stoichiometry !!!

$$
\begin{gathered}
2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{SO}_{4} \\
P V=n R T ; n=\frac{P V}{R T}=\frac{(151 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(0.340 \mathrm{~L})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(293 \mathrm{~K})}=2.13 \mathrm{~mol} \mathrm{HCl}
\end{gathered}
$$

$$
\frac{2.13 \mathrm{~mol} \mathrm{HCl}}{} \times \frac{2 \mathrm{~mol} \mathrm{NaCl}}{2 \mathrm{~mol} \mathrm{HCl}} \times \frac{58.44 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{NaCl}}=124 \mathrm{~g} \mathrm{NaCl}
$$

4) Ammonia, NH_{3}, is generated by mixing hydrogen gas with nitrogen gas. What volume of ammonia can be generated if 30.5 liters of hydrogen at $143.0^{\circ} \mathrm{C}$ and a pressure of 2.27 atm is mixed with excess nitrogen gas under the same conditions?

$$
\begin{gathered}
3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3} \\
H_{2} ; P V=n R T ; n=\frac{P V}{R T}=\frac{(2.27 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(30.5 \mathrm{~L})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(416 \mathrm{~K})}=2.03 \mathrm{~mol} \mathrm{H} \\
2
\end{gathered}
$$

