AP CHEMISTRY

Topic 3: Gases, PART B-I
Day 37:

- Gas Density
- Gas Molar Mass

1) What is the density of carbon tetrachloride vapor at 714 torr and $125^{\circ} \mathrm{C}$?

Answers:

$$
\begin{gathered}
P V=n R T \\
P V=\frac{\text { mass }}{\text { molar mass }} R T \quad \text { or } \quad P V=\frac{m}{M} R T \\
\frac{m}{V}=\frac{P M}{R T} \quad \text { RECALL THAT }: \quad \text { density }=\frac{m}{V} \\
\frac{m}{V}=\frac{P M}{R T}=\frac{(0.939 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(153.823 \mathrm{~g})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(398 \mathrm{~K})(\mathrm{mol})}=4.42 \mathrm{~g} \mathrm{~L}^{-1}
\end{gathered}
$$

2) The average molar mass of the atmosphere at the surface of Titan (Saturn's largest moon) is $28.6 \mathrm{~g} \mathrm{~mol}^{-1}$. The surface temperature is 95.0 K , and the pressure is 1.60 atm (in Earth atm). Assuming ideal behavior, calculate the density of Titan's atmosphere.

Answers:

$$
\begin{gathered}
\frac{m}{V}=\frac{P M}{R T} \\
\frac{m}{V}=\frac{P M}{R T}=\frac{(1.60 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(28.6 \mathrm{~g})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(\mathrm{mol})(95.0 \mathrm{~K})}=5.87 \mathrm{~g} \mathrm{~L}
\end{gathered}
$$

3) Calculate the density of SO_{3} gas at 0.96 atm and $35^{\circ} \mathrm{C}$

Answers:

$$
\begin{gathered}
\frac{m}{V}=\frac{P M}{R T} \\
\frac{m}{V}=\frac{P M}{R T}=\frac{(0.96 \mathrm{~atm})(\mathrm{mol} \cdot K)(80.06 \mathrm{~g})}{(0.0821 \mathrm{~atm} \cdot L)(308 \mathrm{~K})(\mathrm{mol})}=3.0 .06 \mathrm{~g} \mathrm{~mol}^{-1} \\
\mathrm{~g} \mathrm{~L}
\end{gathered}
$$

4) Calculate the molar mass of a gas if 4.40 grams occupies 3.50 L at 560 torr and $41.0^{\circ} \mathrm{C}$.

Answers:

$$
\begin{gathered}
P V=n R T \\
P V=\frac{\text { mass }}{\text { molar mass }} R T \quad \text { or } \quad P V=\frac{m}{M} R T \\
M=\frac{m R T}{P V} \\
M=\frac{(4.40 \mathrm{~g})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(314 \mathrm{~K})}{(3.50 \mathrm{~L})(\mathrm{mol} \cdot \mathrm{~K})(0.737 \mathrm{~atm})}=44.0 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

5) Calculate the molar mass of a gas if it has a density of $3.67 \mathrm{~g} \mathrm{~L}^{-1}$ at $15.0^{\circ} \mathrm{C}$ and 825 torr.

Answers:

$$
\begin{gathered}
P V=n R T \\
P V=\frac{\text { mass }}{\text { molar mass }} R T \quad \text { or } \quad P V=\frac{m}{M} R T \\
M=\frac{m}{V} \times \frac{R T}{P} \\
M=\left(\frac{3.67 \mathrm{~g}}{L}\right) \times \frac{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(288 \mathrm{~K})}{(\mathrm{mol} \cdot \mathrm{~K})(1.08553 \mathrm{~atm})}=80.0 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

