Topic 3: Gases, Test Review

- Boyle, Charles, and Avogadro: Gas Laws
- Ideal Gas Law
- Gas Stoichiometry
- Gas Density
- Gas Molar Mass
- Dalton's Law of Partial Pressures
- Gas collection over Water
- Kinetic Molecular Theory of Gases

Day 43:

- Effusion and Diffusion
- Root mean square velocity
- Real Gases (van der Waals)

1) A compressed gas cylinder contains 45.22 liters of neon gas at a pressure of 4732.0 torr at a temperature of $36.4^{\circ} \mathrm{C}$.

What is the new volume if the pressure is reduced to 3000.0 torr and at a new temperature of $13.56{ }^{\circ} \mathrm{C}$.
Answers:

$$
\begin{aligned}
& P_{1} V_{1}=n R T_{1} \\
& P_{2} V_{2}=n R T_{2} \quad 36.4+273=309.4 K, \quad 13.56+273=286.56 K
\end{aligned}
$$

$$
V_{2}=\frac{P_{1} V_{1} T_{2}}{P_{2} T_{1}}=\frac{(4732.0 \text { torr })(45.22 \mathrm{~L})(286.56 \mathrm{~K})}{(3000.0 \text { torr })(309.4 \mathrm{~K})}=66.1 \mathrm{~L}
$$

2) A 8.00 liter sample of butane gas, $\mathrm{C}_{4} \mathrm{H}_{10}$, reacts with a 24.0 liter sample of oxygen gas at $40.2^{\circ} \mathrm{C}$ and at a pressure of 1.460 atm . Calculate the volume of the carbon dioxide gas formed at a new temperature of $103^{\circ} \mathrm{C}$ and at a pressure of 3.10 atm .
Answers:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 10 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{CO}_{2}
$$

$$
\begin{gathered}
n_{C_{4} H_{10}}=\frac{P V}{R T}=\frac{(1.460 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(8.0 \mathrm{~L})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(313.2 \mathrm{~K})}=0.45423 \mathrm{~mol} C_{4} H_{10} \\
n_{\text {oxygen }}=\frac{P V}{R T}=\frac{(1.460 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(24.0 \mathrm{~L})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(313.2 \mathrm{~K})}=1.3627 \mathrm{~mol} O_{2}
\end{gathered}
$$

$1.3627 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}}{13 \mathrm{~mol} \mathrm{O}}=0.20965 \mathrm{~mol}_{2} \mathrm{C}_{4} \mathrm{H}_{10} ; \mathrm{O}_{2}$ is the limiting reactant

$$
\left.\begin{array}{c}
\frac{1.3627 \mathrm{~mol} \mathrm{O}_{2}}{} \times \frac{8 \mathrm{~mol} \mathrm{CO}}{13 \mathrm{~mol} \mathrm{O}}=0.8386 \mathrm{~mol} \mathrm{CO} \\
2
\end{array}\right]\left(\begin{array}{l}
\text { PV }=n \boldsymbol{R T} ; \quad V=\frac{n R T}{P} \\
V=\frac{(0.8386 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(376 \mathrm{~K})}{(3.10 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=8.35 \mathrm{LCO}_{2}
\end{array}\right.
$$

3) Calculate the density of a sample of gas at STP that has a molar mass of $164.3 \mathrm{~g} \mathrm{~mol}^{-1}$.

Answers:

$$
\begin{gathered}
\frac{m}{V}=\frac{P M}{R T} \\
\frac{m}{V}=\frac{P M}{R T}=\frac{(1.00 \mathrm{~atm})(\mathrm{mol} \cdot K)(164.3 \mathrm{~g})}{(0.0821 \mathrm{~atm} \cdot L)(273 \mathrm{~K})(\mathrm{mol})}=7.330 \mathrm{~g} L^{-1}
\end{gathered}
$$

4) The density of a gas was measured at 3.33 atm and $16.45^{\circ} \mathrm{C}$ and found to be $4.97 \mathrm{~g} / \mathrm{L}$. Calculate the molar mass of this gas.

Answers:

$$
\begin{gathered}
P V=n \boldsymbol{R} \boldsymbol{T} \\
P V=\frac{m}{M} R T \quad \text { therefore, } \quad M=\frac{m}{V} \times \frac{R T}{P} \\
M=\frac{4.97 \mathrm{~g}}{L} \times \frac{(0.0821 \mathrm{~atm} \cdot L)(289.45 \mathrm{~K})}{(3.33 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=35.5 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

5) Hydrogen gas is produced from a chemical reaction and collected over water at $25^{\circ} \mathrm{C}$ and 1.07 atm total pressure.

What total volume of gas must be collected to obtain 3.80 grams of hydrogen gas? (At $25^{\circ} \mathrm{C}$ the vapor pressure of water is 23.8 torr.)

Answers:

$$
\begin{aligned}
& P_{\mathrm{H}_{2}}+P_{\mathrm{H}_{2} \mathrm{O}}=1.07 _ \text {atm }=813.2 _ \text {torr }=P_{\mathrm{H}_{2}}+23.8 _ \text {torr }, \quad=P_{\mathrm{H}_{2}}=789.4 _ \text {torr } \\
& n_{H_{2}}=\frac{3.80 \mathrm{~g} \mathrm{H}_{2}}{} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.0158 \mathrm{~g}}=1.8851 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \\
& V=\frac{n R T}{P}=\frac{(1.8851 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(298 \mathrm{~K})}{(1.0387 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=44 \mathrm{LH}_{2}
\end{aligned}
$$

6) How many times faster would nitrogen gas, N_{2}, diffuse than sulfur tri-oxide gas, SO_{3} ?

Answers:

$$
\begin{gathered}
N_{2}=28.014 \mathrm{~g} \mathrm{~mol}^{-1} \\
\left.\mathrm{SO}_{3}=\left(32.06 \mathrm{~g} \mathrm{~mol}^{-1}\right)+(3)\left(16.00 \mathrm{~g} \mathrm{~mol}^{-1}\right)=80.06 \mathrm{~g} \mathrm{~mol}^{-1}\right) \\
\frac{\text { rate }_{N_{2}}}{\text { rate }_{\mathrm{SO}_{3}}}=\sqrt{\frac{M_{S O_{3}}}{M_{N_{2}}}}=\sqrt{\frac{80.06 \frac{\mathrm{~g}}{\mathrm{~mol}}}{28.014 \frac{\mathrm{~g}}{\mathrm{~mol}}}}=1.691
\end{gathered}
$$

8) Gas " X " diffuses one-eighth as fast as gas " Z ". Gas " Z " has a molecular weight $=3.00 \mathrm{~g} \mathrm{~mol}^{-1}$. What is the molar mass of gas " X ".
Answers:

$$
\begin{gathered}
\frac{\text { rate }_{X}}{\text { rate }_{Z}}=\frac{1}{8}=\sqrt{\frac{M_{Z}}{M_{X}}}=\sqrt{\frac{3.00 \mathrm{~g}}{M_{X}(\mathrm{~mol})}} \text { Therefore. } \\
\left(\frac{1}{8}=\sqrt{\frac{3.00 \mathrm{~g}}{M_{X}(\mathrm{~mol})}}\right)^{2}=\frac{1}{64}=\frac{3.00 \mathrm{~g}}{M_{X}(\mathrm{~mol})} \\
M_{X}=\frac{(64)(3.00 \mathrm{~g})}{(\mathrm{mol})}=192 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

9) Calculate the average kinetic energy of the molecules in a sample of radon gas at 220 K .

Answers

$$
(K E)_{A V E}=\frac{3}{2}\left(\frac{8.31 \mathrm{~J}}{\mathrm{~mol} \mathrm{~K}}\right)(220 \mathrm{~K})=2.7 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}
$$

