AP CHEMISTRY

Topic 3: Gases, Test Review, More Problems
Day 44:

- Boyle, Charles, and Avogadro: Gas Laws
- Ideal Gas Law
- Gas Stoichiometry
- Gas Density
- Gas Molar Mass
- Dalton's Law of Partial Pressures
- Gas collection over Water
- Kinetic Molecular Theory of Gases
- Effusion and Diffusion
- Root mean square velocity
- Real Gases (van der Waals)

1) A student adds 23.0 grams of dry ice $\left(\mathrm{CO}_{2}\right)$ to a empty balloon. What will be the new volume of the balloon at STP after all the dry ice sublimes?

Answers:

Original Volume of balloon will be zero (no gas within the balloon when CO_{2} was a solid)

$$
\begin{aligned}
& \boldsymbol{P V}=\boldsymbol{n} \boldsymbol{R T} ; \quad V=\frac{n R T}{P} \\
& n=\frac{23.0 \mathrm{~g} \mathrm{CO}_{2}}{} \times \frac{1 \mathrm{~mol} \mathrm{CO}}{2} 44.011 \mathrm{~g} \quad=0.5226 \mathrm{~mol} \mathrm{CO} \\
& V=\frac{(0.5226 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(273 \mathrm{~K})}{(1 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})}=11.7 \mathrm{~L}
\end{aligned}
$$

2) Given the equation:

What mass of oxygen (at STP) must be reacted to produce 65.0 liters of CO_{2} at STP?
Answers:

$$
\begin{gathered}
\boldsymbol{P V}=\boldsymbol{n} \boldsymbol{R T} ; n=\frac{P V}{R T} \\
n=\frac{(1 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(65.0 \mathrm{~L})}{(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(273 \mathrm{~K})}=2.90 \mathrm{~mol} \mathrm{CO} \\
2
\end{gathered}
$$

3) A mixture of gases contains about 21.0% oxygen gas and 39.0% nitrogen gas and 39.0% argon gas. What is the density of mixture of gases at $55.0^{\circ} \mathrm{C}$ and 1.75 atm ?

Answers:

Molar Mass of the mixture of gases $=21 \%$ is $\mathrm{O}_{2}, 39 \%$ is $N_{2}, 40 \%$ is Ar

$$
\begin{gathered}
M_{\text {Gases }}=(0.21)\left(32.0 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+(0.39)\left(28.014 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+(0.40)\left(39.948 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=33.625 \frac{\mathrm{~g}}{\mathrm{~mol}} \\
\frac{\mathrm{~m}}{\mathrm{~V}}=\frac{P M}{R T} \\
\frac{\mathrm{~m}}{\mathrm{~V}}=\frac{(1.75 \mathrm{~atm})(\mathrm{mol} \cdot \mathrm{~K})(33.625 \mathrm{~g})}{(0.0821 \mathrm{~atm} \cdot L)(328 \mathrm{~K})(\mathrm{mol})}=2.19 \frac{\mathrm{~g}}{\mathrm{~L}}
\end{gathered}
$$

3) A 9.00 liter gas sample at $175{ }^{\circ} \mathrm{C}$ and 978.2 torr contains 45.0% neon and 55.0% xenon gas by mass. What are the partial pressures of the individual gases?

Answers:

If we had a 100 gram sample of gas, we would have 45 g Ne and 55 g Xe .

$$
\begin{gathered}
n_{N e}=\frac{45.0 \mathrm{~g} \mathrm{Ne}}{} \times \frac{1 \mathrm{~mol} \mathrm{Ne}}{20.179 \mathrm{~g}}=2.230 \mathrm{~mol} \mathrm{Ne} \\
n_{X e}=\frac{55.0 \mathrm{~g} \mathrm{Xe}}{2.230 \mathrm{~mol} \mathrm{Ne}+0.4189 \mathrm{~mol} \mathrm{Xe}=2.6489 \mathrm{~mol} \mathrm{gas}} 131.29 \mathrm{~g} \\
2.2 .4189 \mathrm{~mol} \mathrm{Xe} \\
P_{\mathrm{Ne}}=\left(\frac{2.230 \mathrm{~mol}}{2.6489 \mathrm{~mol}}\right) 978.2 \mathrm{torr}=823.5 \mathrm{torr} \\
P_{X e}=\left(\frac{0.4189 \mathrm{~mol}}{2.6489 \mathrm{~mol}}\right) 978.2 \mathrm{torr}=154.7 \mathrm{torr}
\end{gathered}
$$

5) A mixture of 73.65 grams of oxygen gas and 28.36 grams of helium is placed in a 33.54 liter container at $102.0^{\circ} \mathrm{C}$. Calculate the partial pressure of each gas and the total pressure.

Answers:

$$
\begin{aligned}
& n_{\mathrm{O}_{2}}=\frac{73.65 \mathrm{~g} \mathrm{O}_{2}}{} \times \frac{1 \mathrm{~mol} \mathrm{O}}{32.00 \mathrm{~g}}=2.3016 \mathrm{~mol} \mathrm{O} \\
& n_{\text {He }}=\frac{28.36 \mathrm{~g} \mathrm{He}}{} \times \frac{1 \mathrm{~mol} \mathrm{He}}{4.0026 \mathrm{~g}}=7.0853 \mathrm{~mol} \mathrm{He} \\
& P_{O_{2}}=\frac{n R T}{V}=\frac{(2.3016 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(375 \mathrm{~K})}{(33.54 \mathrm{~L})(\mathrm{mol} \cdot \mathrm{~K})}=2.113 \mathrm{~atm} \\
& P_{H e}=\frac{n R T}{V}=\frac{(7.0853 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(375 \mathrm{~K})}{(33.54 \mathrm{~L})(\mathrm{mol} \cdot \mathrm{~K})}=6.504 \mathrm{~atm} \\
& P_{\text {total }}=P_{\mathrm{O}_{2}}+P_{\mathrm{He}}=2.113 \mathrm{~atm}+6.504 \mathrm{~atm}=8.617 \mathrm{~atm}
\end{aligned}
$$

6) Calculate the pressure exerted by 50.3 moles of Cl_{2} gas in 40.0 . liter container at $22.0^{\circ} \mathrm{C}$ using van der Waal's equation and constants from the example problems page (from Day 41).

$$
\begin{gathered}
\left(P+\frac{n^{2} a}{V^{2}}\right) \times(V-n b)=n R T \\
P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}} \\
P=\left(\left(\frac{(50.3 \mathrm{~mol})(0.0821 \mathrm{~atm} \cdot \mathrm{~L})(\mathrm{mol})(295 \mathrm{~K})}{(40.0 \mathrm{~L}-(50.3 \mathrm{~mol} \times 0.0562 \mathrm{~L}))(\mathrm{mol} \cdot \mathrm{~K})}\right)-\left(\frac{(50.3 \mathrm{~mol})^{2}}{(40.0 \mathrm{~L})^{2}}\left(\frac{6.49 \mathrm{~atm}^{2} \cdot \mathrm{~L}^{2}}{\mathrm{~mol}^{2}}\right)\right)\right) \\
P=32.77 \mathrm{~atm}-10.26 \mathrm{~atm}=22.51 \mathrm{~atm}
\end{gathered}
$$

