AP CHEMISTRY

Topic 4: Atomic Structure \& THE Periodic Table, Part A

- Electromagnetic Radiation
- Periodic Table
- Quantum Numbers
- Aufbau Principle
- Pauli Exclusion Principle
- Hund’s Rule
- Diamagnetism and Paramagnetism
- Energy of an Electron

1) The amount of energy that is required to remove a mole of electrons from the surface of solid lithium is $279.7 \mathrm{~kJ} /$ mol. Calculate the wavelength of the light capable of removing ONE ELECTRON from the surface of a lithium atom.
Answers:

$$
\begin{gathered}
\frac{279.7 \mathrm{~kJ}}{\mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23}}=4.645 \times 10^{-22} \mathrm{~kJ}, \text { Now convert to joules, } \frac{4.645 \times 10^{-22} \mathrm{~kJ}}{} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}=4.645 \times 10^{-19} \mathrm{~J} \\
E=h v \text { and } C=\lambda v \\
E=h v ; v=\frac{E}{h}=\frac{4.645 \times 10^{-19} \mathrm{~J}}{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{sec}}=7.01 \times 10^{14} \frac{1}{\mathrm{sec}} \\
C=\lambda v ; \lambda=\frac{C}{v}=\frac{3.00 \times 10^{8} \mathrm{~m}(\mathrm{sec})}{\left(7.01 \times 10^{14}\right)(\mathrm{sec})}=4.28 \times 10^{-7} \mathrm{~m}
\end{gathered}
$$

OR

$v=\frac{C}{\lambda}$ and $E=h v$ combine the two equations to get, $E=h \frac{C}{\lambda}$

$$
E=\frac{h C}{\lambda} \text { rewrite as: } \lambda=\frac{h C}{E}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{sec}\right)\left(3.00 \times 10^{8} \mathrm{~m}\right)}{\left(4.645 \times 10^{-19} \mathrm{~J}\right)(\mathrm{sec})}=4.28 \times 10^{-7} \mathrm{~m}
$$

2) What are the possible values for the quantum numbers n, l, and m_{l} (starting at the first energy level to the fourth)? Answers:

\boldsymbol{n}	\boldsymbol{l} $(\boldsymbol{0} \rightarrow \boldsymbol{n}-\mathbf{1})$	$\boldsymbol{m}_{\boldsymbol{l}}$ $(\boldsymbol{l} \rightarrow \boldsymbol{0} \rightarrow-\boldsymbol{l})$	$\boldsymbol{m}_{\boldsymbol{s}}$
1	0	0	$1 / 2,-1 / 2$
2	0,1	$1,0,-1$	$1 / 2,-1 / 2$
3	$0,1,2$	$2,1,0,-1,-2$	$1 / 2,-1 / 2$
4	$0,1,2,3$	$3,2,1,0,-1,-2,-3$	$1 / 2,-1 / 2$

3) Which of the following orbital designations are incorrect: $1 s, 1 p, 7 d, 9 s, 3 f, 4 f, 2 d, 3 s, 5 p, 2 p$? Answers:

$$
1 s, \mathbf{1} \boldsymbol{p}, 7 d, 9 s, \mathbf{3} \boldsymbol{f}, 4 f, \mathbf{2 d}, 3 s, 5 p, 2 p
$$

4) Which of the following sets of quantum numbers are not "legal"? For the sets of quantum numbers that are incorrect, state what is wrong in each set.
a) $n=2, l=1, m_{l}=-1$
b) $n=1, l=1, m_{l}=0$
c) $n=8, l=7, m_{l}=-6$
d) $n=1, l=0, m_{l}=2$
e) $n=2, l=1, m_{l}=-3$

Answers:

b, when the principle quantum number is one, "l" cannot be equal to one (which represents " p " orbitals.)
d, when the principle quantum number is one, " m_{l} " cannot be equal to 2 (which represents an orientation for at least the second principle quantum number)
e , when the principle quantum number is two, " m_{l} " cannot be equal to -3 (which represents an orientation for at least the third principle quantum number)
5) The laser in a CD player used light with a wavelength of $7.80 \times 10^{2} \mathrm{~nm}$. Calculate the frequency of this light? Answers:

$$
\begin{gathered}
\frac{7.80 \times 10^{2} \mathrm{~nm}}{} \times \frac{1 \mathrm{~m}}{1 \times 10^{9} \mathrm{~nm}}=7.80 \times 10^{-7} \mathrm{~m} \\
v=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m}}{7.80 \times 10^{-7} \mathrm{~m}(\mathrm{sec})}=3.85 \times 10^{14} \frac{1}{\mathrm{sec}}
\end{gathered}
$$

6) Calculate the mass of the photon discussed in the previous question, which is traveling at $2.83 \times 10^{8} \mathrm{~m} \mathrm{sec}^{-1}$.

Answers:

$$
\begin{gathered}
\lambda=\frac{h}{m v} \text { rewrite as: } m=\frac{h}{\lambda v} \\
\text { convert the units for Planck's constant }- \text { Joules to } \frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{sec}^{2}} \\
m=\frac{h}{\lambda v}=\frac{6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{sec}(\mathrm{sec})}{\left(7.80 \times 10^{-7} \mathrm{~m}\right)\left(\mathrm{sec}^{2}\right)\left(2.83 \times 10^{8} \mathrm{~m}\right)}=3.00 \times 10^{-36} \mathrm{~kg}
\end{gathered}
$$

