- Bond Energy
- Formal Charge

Calculate the Formal Charge and then draw the "best" Lewis-dot structure representation for the molecule.

1) $\mathrm{IO}_{3}{ }^{-1}$
$\mathrm{I}_{\text {assigned }}: 2+1 / 2(6)=5$
$\mathrm{I}_{\text {F.C. }}: 7-5=2$
$\mathrm{O}_{\text {assigned }}$ (single): $6+1 / 2(2)=7$
$\mathrm{O}_{\text {F.C. }}$ (single): $6-7=-1$

$\mathrm{I}_{\text {assigned }}: 2+1 / 2(10)=7$
$I_{\text {F.C. }}: 7-7=0$
$\mathrm{O}_{\text {assigned }}$ (single): $6+1 / 2(2)=7$

$\mathrm{O}_{\text {F.C. }}$ (single): $6-7=-1$
$\mathrm{O}_{\text {assigned }}$ (double): $4+1 / 2(4)=6$
$\mathrm{O}_{\text {F.C. }}$ (double): $6-6=0$
Bond Order: $5 / 3=1.67$ (for correct structure)
2) $\mathrm{PO}_{4}{ }^{-3}$
$\mathrm{P}_{\text {assigned }}: 0+1 / 2(8)=4$
$\mathrm{P}_{\text {F.C. }}: 5-4=1$
$\mathrm{O}_{\text {assigned }}$ (single): $6+1 / 2(2)=7$
$\mathrm{O}_{\text {F.C. }}$ (single): $6-7=-1$

$P_{\text {assigned }}: 0+1 / 2(10)=5$
$\mathrm{P}_{\text {F.C. }}: 5-5=0$
$\mathrm{O}_{\text {assigned }}($ single): $6+1 / 2(2)=7$
$\mathrm{O}_{\text {F.C. }}$ (single): $6-7=-1$
$\mathrm{O}_{\text {assigned }}$ (double): $4+1 / 2(4)=6$

Bond Order: $5 / 4=1.25$ (for correct structure)
$\mathrm{O}_{\text {F.C. }}$ (double): $6-6=0$
3) $\mathrm{NO}_{3}{ }^{-1}$
$\mathrm{N}_{\text {assigned }}: 0+1 / 2(8)=4$
$\mathrm{N}_{\text {F.C. }}: 5-4=1$
$\mathrm{O}_{\text {assigned }}$ (single): $6+1 / 2(2)=7$
$\mathrm{O}_{\text {F.C. }}$ (single): $6-7=-1$

Note: For the elements Carbon, Nitrogen, Oxygen, and Fluorine (second energy elements), when either of these elements are central atoms - they MAY NOT have more than 8 (eight) electrons.

The elements in the rows below may have more than 8 electrons since they have "d-orbitals" to place the "extra" electrons into.

Also, recall that Boron, may only have 6 (six) electrons NOT an octet.
Bond Order: $4 / 3=1.33$
http://www.youtube.com/watch?v=kcXFHdCIns8
4) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

Note: Formal Charge does not ALWAYS provide the most accurate Lewis structure. But it helps us determine the "BEST" structure for MOST molecules.
$C_{\text {assigned }}: 0+1 / 2(8)=4$
$\mathrm{C}_{\text {F.C. }}: 4-4=0$
$\mathrm{O}_{\text {assigned }}$ (single): $6+1 / 2(2)=7$
$\mathrm{O}_{\text {F.C. }}$ (single): $6-7=-1$
$\mathrm{O}_{\text {assigned }}($ double): $4+1 / 2(4)=6$
$\mathrm{O}_{\text {F.C. }}$ (double): $6-6=0$

5) SiO_{3}^{-2}
$\mathrm{Si}_{\text {assigned }}: 0+1 / 2(8)=4$
Si ${ }_{\text {F.C. }}: 4-4=0$
$\mathrm{O}_{\text {assigned }}$ (single): $6+1 / 2(2)=7$
$\mathrm{O}_{\text {F.C. }}$ (single): $6-7=-1$

$\mathrm{O}_{\text {assigned }}$ (double): $4+1 / 2(4)=6$
$\mathrm{O}_{\text {F.C. }}$ (double): $6-6=0$

Bond Order: $4 / 3=1.33$
6) SO_{2}
:ö-s-ö:

$$
{ }_{+}^{+} \mathrm{O}=\underset{+}{\mathrm{S}}=\mathrm{O}_{+}^{+}
$$

$S_{\text {assigned }}: 2+1 / 2(8)=6$
$S_{\text {F.C. }}: 6-6=0$
$\mathrm{O}_{\text {assigned }}$ (single): $6+1 / 2(2)=7$
$\mathrm{O}_{\text {F.C. }}$ (single): $6-7=-1$
$\mathrm{O}_{\text {assigned }}$ (double): $4+1 / 2(4)=6$
$\mathrm{O}_{\text {F.C. }}$ (double): $6-6=0$
Bond Order: 2 / $2=1.0$ (on the correct structure)

7) $\mathrm{CH}_{3} \mathrm{COOH}$

$C_{\text {assigned }}: 0+1 / 2(8)=4$
$C_{\text {F.C. }}: 4-4=0$
$\mathrm{O}_{\text {assigned }}$ (single): $6+1 / 2(2)=7$
$\mathrm{O}_{\text {f.C. }}$ (single): $6-7=-1$
$\mathrm{O}_{\text {assigned }}$ (double): $4+1 / 2(4)=6$
$\mathrm{O}_{\text {F.C. }}$ (double): $6-6=0$
8) OCl_{2}
$\mathrm{O}_{\text {assigned }}$ (single): $4+1 / 2(4)=6$
$\mathrm{O}_{\text {F.C. }}$ (single): $6-6=0$
$\mathrm{Cl}_{\text {assigned }}: 6+1 / 2(2)=7$
$\mathrm{Cl}_{\text {F.C. }}: 7-7=0$
Bond Order: $1 / 1=1.0$

$$
: \ddot{\mathrm{c}: ~: ~} \mathrm{o}: \mathrm{o}: \stackrel{\mathrm{c} l}{\mathrm{l}}
$$

