## AP CHEMISTRY

## TOPIC 6: EQUILIBRIUM, PART A

- Chemical Equilibrium
- Reaction Quotient
- Equilibrium position
- Equilibrium expression

1) Characterize a system at chemical equilibrium with respect to each of the following:
a) The rates of the forward and reverse reactions.

## Answer:

The RATES of the forward reaction and reverse reactions are the SAME at equilibrium.
b) The overall composition of the reaction mixture.

## Answer:

There is no net change in the composition (as long as the temperature is constant). In other words, the "ratio" of the products over the reactants remains the same - we will discuss the mechanisms to this shortly.
2) Write the reaction quotient expression ( $Q$ ) for each of the following gas-phase reactions, which occur in the atmosphere:
a) $\mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$

$$
Q=\frac{\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{2}\right]}{[\mathrm{NO}]\left[\mathrm{O}_{3}\right]}
$$

b) $2 \mathrm{O}_{3(\mathrm{~g})} \rightleftharpoons 3 \mathrm{O}_{2(\mathrm{~g})}$

$$
Q=\frac{\left[O_{2}\right]^{3}}{\left[O_{3}\right]^{2}}
$$

3) Calculate the reaction quotient for:

$$
\mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{SO}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

$\left[\mathrm{O}_{2}\right]=3.70 \mathrm{M}$
$\left[\mathrm{SO}_{2}\right]=4.50 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]=2.50 \mathrm{M}$

$$
Q=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]\left[\mathrm{SO}_{2}\right]^{2}}=\frac{(2.50 \mathrm{M})^{2}}{(3.70 \mathrm{M})(4.50 \mathrm{M})^{2}}=0.0834 \frac{1}{\mathrm{M}}
$$

4) Calculate the reaction quotient for:

$$
2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

$\left[\mathrm{O}_{2}\right]=3.70 \mathrm{M}$
$\left[\mathrm{SO}_{2}\right]=4.50 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]=2.50 \mathrm{M}$

$$
Q=\frac{\left[\mathrm{O}_{2}\right]\left[\mathrm{SO}_{2}\right]^{2}}{\left[\mathrm{SO}_{3}\right]^{2}}=\frac{(3.70 \mathrm{M})(4.50 \mathrm{M})^{2}}{(2.50 \mathrm{M})^{2}}=11.99 \mathrm{M}
$$

4) For the synthesis of ammonia at $500^{\circ} \mathrm{C}$, the equilibrium constant is $6.0 \times 10^{-2}$ ( $K=6.0 \times 10^{-2}$ ). Predict the direction in which the system will shift to reach equilibrium in each of the following cases:
a) $\left[\mathrm{NH}_{3}\right]_{0}=1.0 \times 10^{-3} \mathrm{M} ;\left[\mathrm{N}_{2}\right]_{0}=1.0 \times 10^{-5} \mathrm{M} ;\left[\mathrm{H}_{2}\right]_{0}=2.0 \times 10^{-3} \mathrm{M}$ (note: the " 0 " at the bottom right of the $[$ ] $=$ "initial")
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$

$$
Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{\left(1.0 \times 10^{-3} \mathrm{M}\right)^{2}}{\left(1.0 \times 10^{-5} \mathrm{M}\right)\left(2.0 \times 10^{-3} \mathrm{M}\right)^{3}}=1.25 \times 10^{7} \frac{1}{\mathrm{M}^{2}}
$$

Since $K=6.0 \times 10^{-2}, Q>K$, The reaction will shift to the left (form more reactants)
b) $\left[\mathrm{NH}_{3}\right]_{0}=2.00 \times 10^{-4} \mathrm{M} ;\left[\mathrm{N}_{2}\right]_{0}=1.50 \times 10^{-5} \mathrm{M} ;\left[\mathrm{H}_{2}\right]_{0}=3.54 \times 10^{-1} \mathrm{M}$
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$

$$
Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{\left(2.00 \times 10^{-4} \mathrm{M}\right)^{2}}{\left(1.50 \times 10^{-5} \mathrm{M}\right)\left(3.54 \times 10^{-1} \mathrm{M}\right)^{3}}=6.01 \times 10^{-2} \frac{1}{\mathrm{M}^{2}}
$$

Since $K=6.0 \times 10^{-2}, Q=K$, The reaction will NOT shift (the reaction is at equilibrium)
c) $\left[\mathrm{NH}_{3}\right]_{0}=1.00 \times 10^{-4} \mathrm{M} ;\left[\mathrm{N}_{2}\right]_{0}=5.0 \mathrm{M} ;\left[\mathrm{H}_{2}\right]_{0}=1.0 \times 10^{-2} \mathrm{M}$

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} \quad Q=\frac{\left[N H_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{\left(1.00 \times 10^{-4} \mathrm{M}\right)^{2}}{(5.0 \mathrm{M})\left(1.0 \times 10^{-2} \mathrm{M}\right)^{3}}=2.00 \times 10^{-3} \frac{1}{M^{2}}
$$

Since $K=6.0 \times 10^{-2}, Q<K$, The reaction will shift to the right (form more products)
5. Consider the following gas-phase reaction, at equilibrium, under conditions where the value of the equilibrium constant equals 8.00 :

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}, K_{\text {eq }}=8.00
$$

a) Draw a picture (diagram) that represents a snapshot of a very small portion of the system at equilibrium. Below is representative of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ and $\mathrm{NO}_{2(\mathrm{~g})}$, use this information to assist you in drawing the picture.

b) Calculate the reaction quotient, and determine the direction of shift (if any):
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=3.75 \times 10^{-2} \mathrm{M},\left[\mathrm{NO}_{2}\right]=5.88 \times 10^{-1} \mathrm{M}$

$$
Q=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left(5.88 \times 10^{-1} \mathrm{M}\right)^{2}}{\left(3.75 \times 10^{-2} \mathrm{M}\right)}=9.22 \mathrm{M}
$$

$Q>K$, The reaction will shift to the left (form more reactants)

