Topic 1: Chemical Foundations, Part E

- Percent Composition
- Empirical formulas
- Molecular formulas

1) Calculate the percent composition by mass of the following compounds:
a) MgSO_{4}

ANSWER: First calculate the total molar mass:

$$
24.30 \frac{\mathrm{~g}}{\mathrm{~mol}}+32.06 \frac{\mathrm{~g}}{\mathrm{~mol}}+4\left(16 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=120.36 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

Next, calculate the percent (by mass) of each element: Take the total mass of the element and divide it by the total mass of the compound:

$$
\begin{aligned}
& M g: \frac{\left(24.30 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{\left(120.36 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)} \times 100=20.2 \% \\
& S: \frac{\left(32.06 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{\left(120.36 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)} \times 100=26.6 \% \\
& O: \frac{\left(64.0 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{\left(120.36 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)} \times 100=53.2 \%
\end{aligned}
$$

b) $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

ANSWER: First calculate the total molar mass:

$$
22.99 \frac{\mathrm{~g}}{\mathrm{~mol}}+2\left(12.01 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+3\left(1.008 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+2\left(16.0 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=82.034 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

Next, calculate the percent (by mass) of each element:
Take the total mass of the element and divide it by the total mass of the compound:

$$
\begin{aligned}
& N a: \frac{\left(22.99 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{\left(82.034 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)} \times 100=28.0 \% \\
& C: \frac{2\left(12.01 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{\left(82.034 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)} \times 100=29.3 \% \\
& H: \frac{3\left(1.008 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{\left(82.034 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)} \times 100=3.7 \% \\
& O: \frac{2\left(16.0 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{\left(82.034 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)} \times 100=39.0 \%
\end{aligned}
$$

2) Calculate the empirical formula for a compound containing 71.47% calcium and 28.53% oxygen.

ANSWER:
When given the percent "amounts" - assume you are given a 100 gram sample - so that you make life easy on yourself !!! You may use any amount, the $\mathbf{1 0 0}$ gram sample is just easier...

When calculating (determining) the empirical formula for a compound, convert the mass amount to moles...

$$
\begin{aligned}
& C a: \quad \frac{71.47 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{Ca}}{40.08 \mathrm{~g}}=1.78 \mathrm{~mol} \\
& O: \quad \frac{28.53 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}}=1.78 \mathrm{~mol}
\end{aligned}
$$

Once you know the number of moles for each element, determine the ratio of each element...

$$
\begin{gathered}
C a: \frac{71.47 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{Ca}}{40.08 \mathrm{~g}}=1.78 \mathrm{~mol} ; \frac{1.78 \mathrm{~mol}}{1.78 \mathrm{~mol}}=1 \\
O: \quad \frac{28.53 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}}=1.78 \mathrm{~mol} ; \frac{1.78 \mathrm{~mol}}{1.78 \mathrm{~mol}}=1
\end{gathered}
$$

The ratio of calcium to oxygen is a 1 to 1 ratio... Therefore, the empirical formula is CaO.
3) Calculate the empirical formula for a sample that contains 251.850 g carbon, 14.09 g of hydrogen, and 149.12 g oxygen (in that order).

ANSWER:

When calculating (determining) the empirical formula for a compound, convert the mass amount to moles...

$$
\begin{aligned}
& C: \frac{251.850 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}}=20.97 \mathrm{~mol} \\
& H: \frac{14.09 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g}}=13.978 \mathrm{~mol} \\
& O: \frac{149.12 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}}=9.32 \mathrm{~mol}
\end{aligned}
$$

Once you know the number of moles for each element, determine the ratio of each element...

$$
\begin{aligned}
& C: \frac{251.850 \mathrm{~g}}{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}}=20.97 \mathrm{~mol} ; \frac{20.97 \mathrm{~mol}}{9.32 \mathrm{~mol}}=2.25=2 \frac{1}{4} \times 4=9 \\
& H: \quad \frac{14.09 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g}}=13.978 \mathrm{~mol} ; \frac{13.978 \mathrm{~mol}}{9.32 \mathrm{~mol}}=1.50=1 \frac{1}{2} \times 4=6 \\
& O: \quad \frac{149.12 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}}=9.32 \mathrm{~mol} ; \frac{9.32 \mathrm{~mol}}{9.32 \mathrm{~mol}}=1.00 \times 4=4
\end{aligned}
$$

Recall, one cannot have fractional values (ratios) for a chemical formula - therefore, you must multiply all the values until you have whole numbers...

The ratio of calcium to hydrogen to oxygen is 9 to 6 to 4 ratio... Therefore, the empirical formula is $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{4}$.
4) Determine the molecular formula for the sample of SNH with a molecular mass of 188.35 grams / mole.

ANSWER:

In the problem, the empirical formula has been determined for you already... The question wants you to determine the molecular formula ...

First, calculate the empirical formula mass...

$$
\text { SNH : } 32.06 \frac{\mathrm{~g}}{\mathrm{~mol}}+14.01 \frac{\mathrm{~g}}{\mathrm{~mol}}+1.008 \frac{\mathrm{~g}}{\mathrm{~mol}}=47.078 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

Now that you have the empirical formula mass, take the "given" molecular formula mass and divide it with the empirical formula mass to get a ratio value...

$$
n=\frac{\text { molecular formula molar mass }}{\text { empirical formula molar mass }} ; \frac{188.35 \mathrm{~g}}{47.078 \mathrm{~g}}=n=4
$$

Now take the ratio (that you just calculated) and multiply this value by the empirical value...

$$
(S N H)_{n}=(S N H)_{4}=S_{4} N_{4} H_{4}
$$

5) Determine the molecular formula for a sample that contains 12.09 g nitrogen, 26.73 g phosphorus, and 61.18 g of chlorine where the molecular mass is 347.64 grams / mole

ANSWER:
When calculating (determining) the empirical formula for a compound, convert the mass amount to moles...

$$
\begin{aligned}
& N: \frac{12.09 \mathrm{~g}}{N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g}}=0.8630 \mathrm{~mol} \\
& P: \frac{26.73 \mathrm{~g}}{3} \times \frac{1 \mathrm{~mol} \mathrm{P}}{30.97 \mathrm{~g}}=0.8631 \mathrm{~mol} \\
& C l: \quad \frac{61.18 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g}}=1.7258 \mathrm{~mol}
\end{aligned}
$$

Once you know the number of moles for each element, determine the ratio of each element...

$$
\begin{aligned}
& N: \frac{12.09 \mathrm{~g}}{N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g}}=0.8630 \mathrm{~mol} ; \frac{0.8630 \mathrm{~mol}}{0.8630 \mathrm{~mol}}=1 \\
& P: \frac{26.73 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{P}}{30.97 \mathrm{~g}}=0.8631 \mathrm{~mol} ; \frac{0.8631 \mathrm{~mol}}{0.8630 \mathrm{~mol}}=1 \\
& C l: \quad \frac{61.18 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g}}=1.7258 \mathrm{~mol} ; \frac{1.7258 \mathrm{~mol}}{0.8630 \mathrm{~mol}}=2
\end{aligned}
$$

Empirical Formula : $\mathbf{N P C l}_{2}$

Once you know the empirical formula, you can now calculate and determine the molecular formula. To find the molecular formula, first calculate the empirical formula molar mass:

$$
\mathbf{N P C l}_{2}: \quad 14.01 \frac{\mathrm{~g}}{\mathrm{~mol}}+30.97 \frac{\mathrm{~g}}{\mathrm{~mol}}+2\left(35.45 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=115.88 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

Next, find the "multiplier" for the empirical formula to obtain the molecular formula...

$$
n=\frac{\text { Molecular formula molar mass (given) }}{\text { Empirical formula molar mass (you calculate) }}=\frac{347.64 \mathrm{~g}}{115.88 \mathrm{~g}}=3
$$

