AP CHEMISTRY

TOPIC 6: EQUILIBRIUM, REVIEW

- Chemical Equilibrium
- Heterogeneous Equilibria
- Applications of the Equilibrium Constant
- Solving Equilibrium Problems
- Equilibrium position
- Reaction Quotient
- Calculating Equilibrium Pressures
- Le Chatelier’s Principle.

$$
2 \mathrm{NO}_{(\mathrm{g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

1. After a 1.0 mole sample of $\mathrm{NO}_{(\mathrm{g})}$ is placed into an evacuated 1.0 L container at 500 K , the reaction represented above occurs. The concentration of $\mathrm{NO}_{(\mathrm{g})}$ as a function of time is shown below.

(a) Write the expression for the equilibrium constant, K_{c}, for the reaction.

Answers:

$$
K_{c}=\frac{\left[N_{2}\right]\left[O_{2}\right]}{[N O]^{2}}
$$

1 point for correct expression
(b) What is [NO] at equilibrium?

Answers:

From the graph, [NO] = 0.60 M

1 point for equilibrium of [NO]

(c) Determine the equilibrium concentrations of $\mathrm{N}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$.

Answers:

	2 NO	\rightleftharpoons	N_{2}	+	O_{2}
I	$1.00 M$		0		0
C	$-2 x=-0.40 M$		$x=+0.20 M$		$x=+0.20 \mathrm{M}$
E	$1.0-2 x=0.60 M$		$x=0.20 M$		$x=0.20 \mathrm{M}$

$\left[\mathrm{N}_{2}\right]=\left[\mathrm{O}_{2}\right]=0.20 \mathrm{M}$
1 point for stoichiometric relationship between NO reacting and $\mathrm{N}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$ forming 1 point for $\left[\mathrm{N}_{2}\right]_{\mathrm{eq}}$ and $\left[\mathrm{O}_{2}\right]_{\mathrm{eq}}$
(d) On the graph, make a sketch that shows how the concentration of $\mathrm{N}_{2}(\mathrm{~g})$ changes as a function of time.
From the graph, $\left[\mathrm{N}_{2}\right]_{\mathrm{eq}}$ is 0.20 M
The curve should have the following characteristics:
1 point for any two characteristics

- \quad start at $0 M$;
- increase to 0.20 M ;
- reach equilibrium at the same time [NO] reaches equilibrium

2 points for all three characteristics
(e) Calculate the value of the following equilibrium constants for the reaction at 500 K :
(i) K_{c}

Answers:

$$
K_{c}=\frac{[0.20 \mathrm{M}][0.20 \mathrm{M}]}{[0.60 \mathrm{M}]^{2}}=0.11
$$

1 point for correct substitution (must agree
with parts (b) and (c))
(ii) K_{p}
$K_{p}=K_{c}(R T)^{\Delta n}$
The number of moles on the product side is equal to the number of moles on the reactant side.
$\Delta n=2-2=0$
$K_{p}=K_{c}(R T)^{0} ; \quad(R T)^{0}=1 ; \quad K_{p}=K_{c}(1) ;$
$K_{p}=K_{c}=0.11$
(f) At 1300 K , the value of K_{c} for the reaction is 9.9×10^{-2}. In an experiment, 2.20 mol of $\mathrm{NO}_{(\mathrm{g}}, 0.333 \mathrm{~mol}$ of $\mathrm{N}_{2(\mathrm{~g})}$, and 0.934 mol of $\mathrm{O}_{2(\mathrm{~g})}$ are placed in a 1.50 L container and allowed to reach equilibrium at 1300 K . Determine whether the equilibrium concentration of $\mathrm{NO}_{(\mathrm{g})}$ will be greater than, equal to, or less than the initial concentration of $\mathrm{NO}_{(\mathrm{g})}$. Justify your answer.
$Q=\frac{\left[N_{2}\right]\left[O_{2}\right]}{[N O]^{2}}=\frac{\left[\frac{0.333 \mathrm{~mol}}{1.50 \mathrm{~L}}\right]\left[\frac{0.934 \mathrm{~mol}}{1.50 \mathrm{~L}}\right]}{\left[\frac{2.20 \mathrm{~mol}}{1.50 \mathrm{~L}}\right]^{2}}=6.4 \times 10^{-2}$

$$
K_{c}=9.9 \times 10^{-2}
$$

$Q<K_{c}$

Justification (defined: explanation):
To establish equilibrium, the numerator must increase and the denominator must decrease. Therefore, [NO] will decrease in order for Q and K to be equal.
2. At a certain temperature, $K=9.1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ for the reaction

$$
\mathrm{FeSCN}_{(\mathrm{aq})}^{+2} \rightleftharpoons \mathrm{Fe}_{(\mathrm{aq})}^{+3}+\mathrm{SCN}_{(\mathrm{aq})}^{-1}
$$

Calculate the concentrations of $\mathrm{Fe}^{+3}, \mathrm{SCN}^{-1}$ and FeSCN^{+2} in a solution which is initially $2.0 \mathrm{M} \mathrm{FeSCN}^{+2}$.
Answers:

	$\left[\mathrm{FeSCN}^{+2}\right]$	\rightleftharpoons	$\left[\mathrm{Fe}^{+3}\right]$	+	$\left[\mathrm{SCN}^{-1}\right]$
I	$2.0 \mathrm{~mol} / 1.0 \mathrm{~L}$		0		0
C	$-x$		$+x$		$+x$
E	$2.0-x$		x		x

$$
\begin{gathered}
9.1 \times 10^{-4}=\frac{\left[\mathrm{Fe}^{+3}\right]\left[S C N^{-1}\right]}{\left[F e S C N^{+2}\right]}=\frac{x^{2}}{(2.0-x)}=\frac{x^{2}}{2.0} \quad(\text { assuming } 2.0-x \approx 2.0) \\
(2.0)\left(9.1 \times 10^{-4}\right)=x^{2} ; \sqrt{1.82 \times 10^{-3}}=x=4.3 \times 10^{-2} \\
4.3 \times 10^{-2}=x, \text { Assumption good } \\
{\left[F e^{+3}\right]=\left[S C N^{-1}\right]=x=4.3 \times 10^{-2} ;\left[F e S C N^{+2}\right]=2.0}
\end{gathered}
$$

3. At a certain temperature, $K=3.74 \times 10^{-6}$ for the reaction

$$
2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Calculate the concentrations of each in which there are initially $2.5 \mathrm{~mol} \mathrm{SO}_{3}$ and $3.7 \mathrm{~mol}^{\text {of } \mathrm{O}_{2} \text { in a one liter }}$ container.

Answers:

	$2\left[\mathrm{SO}_{3}\right]$	\rightleftharpoons	$2\left[\mathrm{SO}_{2}\right]$	+	$\left[\mathrm{O}_{2}\right]$
I	$2.5 \mathrm{~mol} / 1.0 \mathrm{~L}$		0		$3.7 \mathrm{~mol} / 1.0 \mathrm{~L}$
C	$-2 x$		$+2 x$		$+x$
E	$2.5-2 x$		$2 x$		$3.7+x$

$$
3.74 \times 10^{-6}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}=\frac{(2 x)^{2}(3.7+x)}{(2.5-x)^{2}}
$$

(assuming $3.7+x \approx 3.7$, and $2.5-x \approx 2.5$)

$$
\begin{gathered}
3.74 \times 10^{-6}=\frac{(2 x)^{2}(3.7)}{(2.5)^{2}} ; \frac{\left(3.74 \times 10^{-6}\right)(2.5)^{2}}{(3.7)}=(2 x)^{2} ; 6.32 \times 10^{-6}=4 x^{2} \\
\frac{6.32 \times 10^{-6}}{4}=x^{2} ; \sqrt{1.58 \times 10^{-6}}=x=0.00126 \\
{\left[\mathrm{SO}_{3}\right]=2.5 ;\left[\mathrm{O}_{2}\right]=3.7 ;\left[\mathrm{SO}_{2}\right]=0.00251}
\end{gathered}
$$

