AP CHEMISTRY

TOPIC 6: EQUILIBRIUM, REVIEW EXAMPLES

 $2 \operatorname{SO}_{3(g)} \rightleftharpoons 2 \operatorname{SO}_{2(g)} + \operatorname{O}_{2(g)}$

1. After a 3.0 mole sample of SO_{3 (g)} is placed into an evacuated 3.0 L container at 300. K, the reaction represented above occurs. The concentration of SO_{3 (g)} as a function of time is shown below.

(a) Write the expression for the equilibrium constant, K, for the reaction.

$$K_{c} = \frac{\left[SO_{2} \right]^{2} \left[O_{2} \right]}{\left[SO_{3} \right]^{2}}$$

(b) What is [SO₃] at equilibrium?

From the graph, $[SO_3] = 0.40 M$

(c) Determine the equilibrium concentrations of $\,SO_{2\,\,(g)}\,$ and $\,O_{2\,\,(g)}$

	2 SO ₃	\rightleftharpoons	2 SO_2	+	O_2
Ι	1.00 M		0		0
С	-2x = -0.60 M		+2x = +0.60 M		+x = +0.30 M
Е	1.0 - 2x = 0.40 M		2x = 0.60 M		x = 0.30 M

 $[SO_2] = 0.60 M, [O_2] = 0.30 M$

Stoichiometric relationship between SO_3 reacting and $SO_{2(g)}$ and $O_{2(g)}$ forming. This is NOT a rule of 5% type of question. YOU KNOW exactly what the concentrations of the reactant and each product is at equilibrium.

(d) On the graph, make a sketch that shows how the concentrations of SO_{2 (g)} and O_{2 (g)} changes as a function of time.

From the graph, $[SO_2]_{eq}$ is 0.60 M, and $[O_2]_{eq}$ is 0.30 M,

The curve should have the following characteristics (for SO_2):

- *start at 0 M;*
- *increase to 0.60 M;*
- reach equilibrium at the same time [SO₃] reaches equilibrium. the reacts and products will reach equilibrium at the SAME TIME !

The curve should have the following characteristics (for O_2):

- *start at 0 M;*
- increase to 0.30 M;
- reach equilibrium at the same time [SO₃] reaches equilibrium. the reacts and products will reach equilibrium at the SAME TIME !

(e) Calculate the value of the following equilibrium constants for the reaction at 300 K:

(i)
$$K_c$$

(

$$K_{c} = \frac{\left[\begin{array}{c} 0.60 \ M\end{array}\right]^{2} \left[\begin{array}{c} 0.30 \ M\end{array}\right]}{\left[\begin{array}{c} 0.40 \ M\end{array}\right]^{2}} = 0.675 \ M$$

ii) K_{p}
$$K_{p} = K_{c} \left(RT\right)^{\Delta n}$$
$$\Delta n = (2+1)-2 = +1$$
$$K_{p} = K_{c} \left(RT\right)^{1}$$
$$K_{p} = \left(\frac{0.675 \ mol}{L}\right) \left[\left(\frac{0.0821 \ atm \cdot L}{mol \cdot K}\right)(300 \ K)\right]^{1} = 16.6 \ atm$$