$$
2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

1. After a 3.0 mole sample of $\mathrm{SO}_{3(\mathrm{~g})}$ is placed into an evacuated 3.0 L container at 300 . K , the reaction represented above occurs. The concentration of $\mathrm{SO}_{3(\mathrm{~g})}$ as a function of time is shown below.

(a) Write the expression for the equilibrium constant, K, for the reaction.

$$
K_{c}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}
$$

(b) What is $\left[\mathrm{SO}_{3}\right]$ at equilibrium?

From the graph, $\left[\mathrm{SO}_{3}\right]=0.40 \mathrm{M}$
(c) Determine the equilibrium concentrations of $\mathrm{SO}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$.

	$2 \mathrm{SO}_{3}$	\rightleftharpoons	$2 \mathrm{SO}_{2}$	+	O_{2}
I	$1.00 M$		0		0
C	$-2 x=-0.60 M$		$+2 x=+0.60 M$		$+x=+0.30 M$
E	$1.0-2 x=0.40 M$		$2 x=0.60 M$		$x=0.30 M$

$$
\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.30 \mathrm{M}
$$

Stoichiometric relationship between SO_{3} reacting and $\mathrm{SO}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$ forming. This is NOT a rule of 5% type of question. YOU KNOW exactly what the concentrations of the reactant and each product is at equilibrium.
(d) On the graph, make a sketch that shows how the concentrations of $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ changes as a function of time.

From the graph, $\left[\mathrm{SO}_{2}\right]_{e q}$ is 0.60 M , and $\left[\mathrm{O}_{2}\right]_{e q}$ is 0.30 M ,
The curve should have the following characteristics (for SO_{2}):

- start at 0 M;
- increase to 0.60 M ;
- reach equilibrium at the same time [SO_{3}] reaches equilibrium. the reacts and products will reach equilibrium at the SAME TIME!

The curve should have the following characteristics (for O_{2}):

- start at 0 M;
- increase to 0.30 M ;
- reach equilibrium at the same time [SO_{3}] reaches equilibrium. the reacts and products will reach equilibrium at the SAME TIME!

(e) Calculate the value of the following equilibrium constants for the reaction at 300 K :
(i) K_{c}

$$
K_{c}=\frac{[0.60 \mathrm{M}]^{2}[0.30 \mathrm{M}]}{[0.40 \mathrm{M}]^{2}}=0.675 \mathrm{M}
$$

(ii) K_{p}

$$
\begin{gathered}
K_{p}=K_{c}(R T)^{\Delta n} \\
\Delta n=(2+1)-2=+1 \\
K_{p}=K_{c}(R T)^{1} \\
K_{p}=\left(\frac{0.675 \mathrm{~mol}}{L}\right)\left[\left(\frac{0.0821 \mathrm{~atm} \cdot L}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(300 \mathrm{~K})\right]^{1}=16.6 \mathrm{~atm}
\end{gathered}
$$

