TOPIC 6: EQUILIBRIUM, REVIEW

- Chemical Equilibrium
- Heterogeneous Equilibria
- Applications of the Equilibrium Constant
- Solving Equilibrium Problems
- Equilibrium position
- Reaction Quotient
- Calculating Equilibrium Pressures
- Le Chatelier's Principle.

1. For the following process at $700 .{ }^{0} \mathrm{C}$, what is the partial pressure of the gases at equilibrium if the total pressure is 0.750 atm ? Carbon dioxide has a partial pressure of 0.201 atm .

$$
\mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})} \quad K_{p}=1.50 \mathrm{~atm}
$$

Answers

$$
\begin{gathered}
K_{p}=\frac{P_{C O}^{2}}{P_{C O_{2}}}=1.50 ; \frac{P_{C O}^{2}}{(0.201)}=1.50 ; P_{C O}^{2}=(1.50 \mathrm{~atm})(0.201 \mathrm{~atm})=0.3015 \mathrm{~atm}^{2} \\
P_{C O}=\sqrt{0.3015 \mathrm{~atm}^{2}}=0.549 \mathrm{~atm}
\end{gathered}
$$

2. Calculate the equilibrium constant, K, for the following reaction at $25.0{ }^{0} \mathrm{C}$ if the equilibrium concentrations are $\left[\mathrm{Cl}_{2}\right]=0.371 \mathrm{M},\left[\mathrm{F}_{2}\right]=0.194 \mathrm{M}$, and $[\mathrm{ClF}]=1.02 \mathrm{M}$.

$$
\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{ClF}_{(\mathrm{g})}
$$

Answers

$$
K_{p}=\frac{[C l F]^{2}}{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{F}_{2}\right]}=\frac{(1.02 \mathrm{M})^{2}}{(0.371 \mathrm{M})(0.194 \mathrm{M})}=14.5
$$

3. Hypobromous acid, HOBr , dissociates in water according to the following reaction:

$$
\mathrm{HOBr}_{(\mathrm{aq})} \leftrightarrow \mathrm{OBr}^{-1}(\mathrm{aq})+\mathrm{H}_{\text {(aq) }}^{+1} \quad K=2.06 \times 10^{-9} \text { at } 25.0^{0} \mathrm{C}
$$

Calculate the $\left[\mathrm{H}^{+1}\right]$ of a solution originally 1.25 M in HOBr .
Answers:

	$[\mathrm{HOBr}]$	\leftrightarrow	$\left[\mathrm{OBr}^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
I	$1.25 \mathrm{~mol} / \mathrm{L}$		0		0
C	$-x$		$+x$		$+x$
E	$1.25-x$		x		x

$$
\begin{gathered}
2.06 \times 10^{-9}=\frac{\left[\mathrm{OBr}^{-1}\right]\left[\mathrm{H}^{+1}\right]}{[\mathrm{HOBr}]}=\frac{x^{2}}{(1.25-x)}=\frac{x^{2}}{1.25} \quad(\text { assuming } 1.25-x \approx 1.25) \\
(1.25)\left(2.06 \times 10^{-9}\right)=x^{2} ; \sqrt{2.575 \times 10^{-9}}=x=5.07 \times 10^{-5} \\
{\left[\mathrm{H}^{+1}\right]=5.07 \times 10^{-5}=x, \text { Assumption is great !!! }}
\end{gathered}
$$

Other concentrations: $\left[H^{+1}\right]=\left[\mathrm{OBr}^{-1}\right]=x=5.07 \times 10^{-5} \mathrm{M}\lfloor\mathrm{HOBr}\rfloor=1.25 \mathrm{M}$
4. The reaction of methane with water is given by the following equation:

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \leftrightarrow \mathrm{CO}_{(l)}+3 \mathrm{H}_{2(\mathrm{~g})} \quad K=5.67 \quad \Delta H^{0}=-350 \mathrm{~kJ}
$$

Predict the direction that the system will shift in order to reach equilibrium given the following situations.
Answers:

a.	$Q=11.85$	$Q>K$, Shift to left (toward reactants)
b.	$Q=3.8 \times 10^{-4}$	$Q<K$, Shift to right (toward products)
c.	water is added	No shift, water is a pure liquid
d.	methane is reduced	Shift to left (toward reactants)
e.	energy is added	Shift to left (toward reactants)
f.	container's volume is reduced	Shift to left (toward reactants)

5. The equilibrium constant is $9.30 \mathrm{~atm}^{-2}$ at $25.0^{\circ} \mathrm{C}$ for the reaction:

$$
\mathrm{N}_{2_{(\mathrm{g})}}+6 \mathrm{HCl}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{Cl}_{2(\mathrm{~g})}
$$

The partial pressures for the gases are: $P_{N_{2}}=2.58 \mathrm{~atm}, P_{\mathrm{HCl}}=0.555 \mathrm{~atm}, P_{N H_{3}}=1.45 \mathrm{~atm} . P_{C l_{2}}=0.750 \mathrm{~atm}$, For this set of conditions, is the system at equilibrium (Show all work)? If not at equilibrium, in which direction will the system shift?

Answers:

$$
Q=\frac{\left(P_{\mathrm{NH}_{3}}^{2}\right)\left(P_{\mathrm{Cl}_{2}}^{3}\right)}{\left(P_{N_{2}}\right)\left(P_{\mathrm{HCl}}^{6}\right)}=\frac{(1.45 \mathrm{~atm})^{2}(0.750 \mathrm{~atm})^{3}}{(2.58 \mathrm{~atm})(0.555 \mathrm{~atm})^{6}}=11.8 \mathrm{~atm}^{-2}
$$

Shift to the Left
6. At $25^{\circ} \mathrm{C}, K_{p}=9.30 \mathrm{~atm}^{-2}$ for the reaction (same as in question \# 5):

$$
\mathrm{N}_{2_{(\mathrm{g})}}+6 \mathrm{HCl}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{Cl}_{2(\mathrm{~g})}
$$

what is the value for K_{c} at this temperature.

Answers:

$$
\begin{gathered}
\Delta n=(2+5)-(1+6)=-2 \\
K_{p}=K_{c}(R T)^{\Delta n} \text { re-write as: } K_{c}=\frac{K_{p}}{(R T)^{-2}}=K_{p}(R T)^{2} \\
K_{C}=K_{p}(R T)^{2}=\left(\frac{9.30}{\mathrm{~atm}^{2}}\right)\left(\left(\frac{0.0821 \mathrm{~atm} L}{\mathrm{~mol} \mathrm{~K}}\right)(298 \mathrm{~K})\right)^{2} \\
K_{C}=\left(\frac{9.30}{\mathrm{~atm}^{2}}\right)\left(\left(\frac{0.00674 \mathrm{~atm}^{2} L^{2}}{m o l^{2} \mathrm{~K}^{2}}\right)\left(88804 \mathrm{~K}^{2}\right)\right) \\
K_{C}=5.57 \times 10^{3} \frac{L^{2}}{\mathrm{~mol}^{2}}
\end{gathered}
$$

