AP CHEMISTRY

TOPIC 6: EQUILIBRIUM, REVIEW

Day 71:

• Chemical Equilibrium

• Equilibrium position

Equilibrium expression

• Heterogeneous Equilibria

• Reaction Quotient

• Equilibrium (pressures)

• Applications of the Equilibrium Constant

• Calculating Equilibrium Pressures

• Solving Equilibrium Problems

• Le Chatelier's Principle.

1. For the following process at 700. ⁰C, what is the partial pressure of the gases at equilibrium if the total pressure is 0.750 atm? Carbon dioxide has a partial pressure of 0.201 atm.

$$C_{(s)} + CO_{2(g)} \leftrightarrow 2 CO_{(g)}$$
 $K_p = 1.50 atm$

Answers

$$K_{p} = \frac{P_{CO}^{2}}{P_{CO_{2}}} = 1.50 \; ; \; \frac{P_{CO}^{2}}{\left(0.201\right)} = 1.50 \; ; \; P_{CO}^{2} = \left(1.50 \; atm \right) \left(0.201 \; atm \right) = 0.3015 \; atm^{2}$$

$$P_{CO} = \sqrt{0.3015 \; atm^{2}} = 0.549 \; atm$$

2. Calculate the equilibrium constant, K, for the following reaction at 25.0 $^{\circ}$ C if the equilibrium concentrations are $[Cl_2] = 0.371 M$, $[F_2] = 0.194 M$, and [ClF] = 1.02 M.

$$Cl_{2(g)} + F_{2(g)} \leftrightarrow 2 ClF_{(g)}$$

Answers

$$K_{p} = \frac{\left[\begin{array}{c|c} ClF \end{array}\right]^{2}}{\left[\begin{array}{c|c} Cl_{2} \end{array}\right] \left[\begin{array}{c|c} F_{2} \end{array}\right]} = \frac{\left(\begin{array}{c|c} 1.02 \ M \end{array}\right)^{2}}{\left(\begin{array}{c|c} 0.371 \ M \end{array}\right) \left(\begin{array}{c|c} 0.194 \ M \end{array}\right)} = 14.5$$

3. Hypobromous acid, HOBr, dissociates in water according to the following reaction:

$$\text{HOBr}_{(aq)} \leftrightarrow \text{OBr}^{-1}_{(aq)} + \text{H}^{+1}_{(aq)} \qquad K = 2.06 \text{ x } 10^{-9} \text{ at } 25.0 \,^{\circ}\text{C}$$

Calculate the $[H^{+1}]$ of a solution originally 1.25 M in HOBr.

Answers:

	[HOBr]	\leftrightarrow	[OBr ⁻¹]	+	[H ⁺¹]
I	1.25 mol / L		0		0
С	- <i>x</i>		+ <i>x</i>		+ <i>x</i>
Е	1.25 - x		X		х

$$2.06 \times 10^{-9} = \frac{\left[OBr^{-1}\right] \left[H^{+1}\right]}{\left[HOBr\right]} = \frac{x^{2}}{\left(1.25 - x\right)} = \frac{x^{2}}{1.25} \quad \text{(assuming } 1.25 - x \approx 1.25\text{)}$$

$$\left(1.25\right) \left(2.06 \times 10^{-9}\right) = x^{2}; \quad \sqrt{2.575 \times 10^{-9}} = x = 5.07 \times 10^{-5}$$

$$\left[H^{+1}\right] = 5.07 \times 10^{-5} = x, \quad \text{Assumption is great } !!!$$
Other concentrations:
$$\left[H^{+1}\right] = \left[OBr^{-1}\right] = x = 5.07 \times 10^{-5} M \quad \left[HOBr\right] = 1.25 M$$

The reaction of methane with water is given by the following equation:

$$CH_{4 (g)} + H_2O_{(l)} \leftrightarrow CO_{(l)} + 3 H_{2 (g)}$$
 $K = 5.67$ $\Delta H^0 = -350 \text{ kJ}$

Predict the direction that the system will shift in order to reach equilibrium given the following situations. Answers:

a.	Q = 11.85	Q > K, Shift to left (toward reactants)
b.	$Q = 3.8 \times 10^{-4}$	Q < K, Shift to right (toward products)
c.	water is added	No shift, water is a pure liquid
d.	methane is reduced	Shift to left (toward reactants)
e.	energy is added	Shift to left (toward reactants)
f.	container's volume is reduced	Shift to left (toward reactants)

5. The equilibrium constant is 9.30 atm⁻² at 25.0 °C for the reaction:

$$N_{2~(g)}~+~6~HCl_{~(g)}~\leftrightarrow~2~NH_{3~(g)}~+~3~Cl_{2~(g)}$$

The partial pressures for the gases are: P_{N_2} = 2.58 atm, P_{HCl} = 0.555 atm, P_{NH_3} = 1.45 atm. P_{Cl_2} = 0.750 atm, For this set of conditions, is the system at equilibrium (Show all work)? If not at equilibrium, in which direction will the system shift?

Answers:

$$Q = \frac{\left(P_{NH_3}^{2}\right)\left(P_{Cl_2}^{3}\right)}{\left(P_{N_2}\right)\left(P_{HCl}^{6}\right)} = \frac{\left(1.45 \text{ atm}\right)^{2}\left(0.750 \text{ atm}\right)^{3}}{\left(2.58 \text{ atm}\right)\left(0.555 \text{ atm}\right)^{6}} = 11.8 \text{ atm}^{-2}$$
Shift to the Left

6. At 25 0 C, $K_{p} = 9.30$ atm $^{-2}$ for the reaction (same as in question # 5):

$$N_{2~(g)}~+~6~HCl_{~(g)}~\longleftrightarrow~2~NH_{3~(g)}~+~3~Cl_{2~(g)}$$

what is the value for K_c at this temperature.

Answers:

$$\Delta n = (2+5)-(1+6) = -2$$

$$K_p = K_c (RT)^{\Delta n}$$
 re-write as: $K_c = \frac{K_p}{(RT)^{-2}} = K_p (RT)^2$

$$K_C = K_p(RT)^2 = \left(\frac{9.30}{atm^2}\right) \left(\left(\frac{0.0821 \ atm \ L}{mol \ K}\right)(298 \ K)\right)^2$$

$$K_C = \left(\frac{9.30}{atm^2}\right) \left(\left(\frac{0.00674 \ atm^2 \ L^2}{mol^2 \ K^2}\right) \left(88804 \ K^2\right) \right)$$

$$K_C = 5.57 \times 10^3 \frac{L^2}{mol^2}$$