AP CHEMISTRY

TOPIC 7: ACIDS & BASES, PART B

- pH and pOH scale pH of strong acids pH of weak acids
- 1. Calculate the pH of each of the following strong acids in water.
 - a) 0.10 *M* HCl : $[\mathbf{H}^+] = 0.10 M$, pH = -log(0.10) = 1.00
 - b) $5.0 \ge 10^{-4} M \text{ HCl}$: $[\mathbf{H}^+] = 5.0 \ge 10^{-4} M$, $pH = -log (5.0 \ge 10^{-4}) = 3.30$
 - c) $1.0 \ge 10^{-11} M$ HCl : $[H^+] = 1.0 \ge 10^{-11} M$, $pH = -log (1.0 \ge 10^{-11}) = 11.00$
- 2. A solution is prepared by adding 50.0 mL of 0.0500 M HCl to 150. mL of 0.10 M HNO₃. Calculate the concentrations of all the species in this solution. (hint: do a dissociation for each strong acid, AND recall what the solvent for these acids, H₂O.)

Answers: Strong Acids = 100 % dissociation, Total Volume = 200 mL = 0.2 L

HCl:
$$\frac{50 \ mL}{1000 \ mL} \times \frac{1 \ L}{1000 \ mL} \times \frac{0.05 \ mol}{L} = 0.0025 \ mol$$

HNO₃:
$$\frac{150 \ mL}{1000 \ mL} \times \frac{1 \ L}{1000 \ mL} \times \frac{0.10 \ mol}{L} = 0.015 \ mol$$

$$HCl \rightarrow H^{+1} + Cl^{1}$$
$$HNO_{3} \rightarrow H^{+1} + NO_{3}^{-1}$$

$$[\mathbf{CI}^{-1}] = \frac{0.0025 \ mol}{0.2 \ L} = 0.0125 \ M$$

$$[\mathbf{NO_3}^{-1}] = \frac{0.015 \ mol}{0.2 \ L} = 0.075 \ M$$

$$[\mathbf{H}^{+1}] = \frac{(0.015 \ mol \ + \ 0.0025 \ mol)}{0.2 \ L} = 0.0875 \ M$$

3. Calculate the concentration of an aqueous HCl solution that has a pH = 2.50.

 $[H^{+1}] = Antilog(-2.50) = 3.16 \times 10^{-3} M$

HCl is a strong acid, 100 % dissociation

$$HCl \rightarrow H^{+1} + Cl^{-1}$$

Therefore, $[HCl] = [Cl^{-1}] = [H^{+1}]$

Day 76:

4. A 0.20 *M* solution of acetic acid has a $K_a = 1.8 \times 10^{-5}$. Calculate the concentration of all the species present in the solution. Also, calculate the pH.

Answers:	WEAK ACID

	[HC ₂ H ₃ O ₂]	\leftrightarrow	[H ⁺¹]	+	$[C_{2}H_{3}O_{2}^{-1}]$
Ι	0.20 M		0		0
С	- <i>x</i>		+x		+ <i>x</i>
E	0.20 M - x		x		x

$$K_{a} = 1.8 \times 10^{-5} = \frac{\left[H^{+1}\right] \left[C_{2}H_{3}O_{2}^{-1}\right]}{\left[HC_{2}H_{3}O_{2}\right]^{2}} = \frac{x^{2}}{0.20 - x} = \frac{x^{2}}{0.20}$$

$$1.8 \times 10^{-5} (0.2) = x^{2} ; x = \sqrt{3.6 \times 10^{-6}} = 1.9 \times 10^{-3} M$$

$$pH = -\log(1.9 \times 10^{-3}) = 2.72$$

- 5. Calculate the [H^+] and [OH^-] for each solution.
 - a) pH = 7.41 (normal pH for blood),

$$[\mathbf{H}^{+1}] = Antilog(-7.41) = 3.89 \times 10^{-8} M, \quad \left[OH^{-1} \right] = \frac{1.00 \times 10^{-14}}{3.89 \times 10^{-8}} = 2.57 \times 10^{-7} M$$

b)pH = 13.00

$$[\mathbf{H}^{+1}] = Antilog(-13.4) = 3.98 \times 10^{-14} M, \quad \left[OH^{-1} \right] = \frac{1.00 \times 10^{-14}}{3.98 \times 10^{-14}} = 0.251 M$$

c) pH = 3.20

$$[\mathbf{H}^{+1}] = Antilog(-3.2) = 6.31 \times 10^{-4} M, \quad \left[OH^{-1} \right] = \frac{1.00 \times 10^{-14}}{6.31 \times 10^{-4}} = 1.58 \times 10^{-11} M$$

d) pOH = 3.20

$$[\mathbf{OH}^{-1}] = Antilog(-3.2) = 6.31 \times 10^{-4} M, \quad \left[H^{+1} \right] = \frac{1.00 \times 10^{-14}}{6.31 \times 10^{-4}} = 1.58 \times 10^{-11} M$$

e)pOH = 9.30

$$[\mathbf{OH}^{-1}] = Antilog(-9.3) = 5.01 \times 10^{-10} M, [H^{+1}] = \frac{1.00 \times 10^{-14}}{5.01 \times 10^{-10}} = 2.00 \times 10^{-5} M$$

6. Boric acid, H₃BO₃ is commonly used in eyewash solutions in chemistry laboratories to neutralize bases splashed in the eye. It acts as a monoprotic acid, but the dissociation reaction is slightly different from that of other acids.

 $B(OH)_{3(aq)} + H_2O_{(l)} \leftrightarrow B(OH)_4^{-1}_{(aq)} + H^+_{(aq)} = K_a = 5.8 \times 10^{-10}$

Calculate the pH of a 0.50 M solution of boric acid

A	nswer	s:	W	EAK ACID				
		[B(OH) ₃]		[H ₂ O]	\leftrightarrow	[B(OH) ₄ ⁻¹]	+	$[\mathrm{H}^{+1}]$
	Ι	0.5 M		-		0		0
	С	- x		-		+x		+x
	E	0.5 <i>M</i> - <i>x</i>		-		x		X

$$K_{a} = 5.8 \times 10^{-10} = \frac{\left[B(OH)_{4}^{-1}\right]\left[H^{+1}\right]}{\left[B(OH)_{3}\right]^{2}} = \frac{x^{2}}{0.50 - x} = \frac{x^{2}}{0.50}$$

$$5.8 \times 10^{-10} (0.50) = x^2$$
; $x = \sqrt{2.90 \times 10^{-10}} = 1.70 \times 10^{-5} M$
[H⁺¹] = 1.70 x 10⁻⁵ M, **pH** = $-\log(1.70 \times 10^{-5}) = 4.77$

7. Hypobromous acid, HOBr, is a weak acid that dissociates in water, as represented in the equation below:

HOBr _(aq)
$$\leftrightarrow$$
 H⁺ _(aq) + OBr _(aq) $K_a = 2.3 \times 10^{-9}$

Calculate the pH of a 2.50 M HOBr solution

Ans	wei	rs:

WEAK ACID

	[HOBr]	\leftrightarrow	$[H^{+1}]$	+	[OBr ⁻¹]
Ι	2.50 M		0		0
С	- <i>x</i>		+x		+x
E	2.50 <i>M</i> - <i>x</i>		x		x

$$K_a = 2.3 \times 10^{-9} = \frac{\left[OBr^{-1}\right]\left[H^{+1}\right]}{\left[HOBr\right]^2} = \frac{x^2}{2.50 - x} = \frac{x^2}{2.50}$$

$$2.3 \times 10^{-9} (2.50) = x^2$$
; $x = \sqrt{5.75 \times 10^{-9}} = 7.58 \times 10^{-5} M$
[H⁺¹] = 7.58 x 10⁻⁵ M, **pH** = $-\log(7.58 \times 10^{-5}) = 4.12$