- pH and pOH scale
- pH of strong acids
- pH of weak acids

1. Calculate the pH of each of the following strong acids in water.
a) $0.10 \mathrm{M} \mathrm{HCl}:\left[\mathbf{H}^{+}\right]=\mathbf{0 . 1 0} \mathbf{M}, \mathbf{p H}=-\boldsymbol{\operatorname { l o g }}(\mathbf{0 . 1 0})=\mathbf{1 . 0 0}$
b) $5.0 \times 10^{-4} \mathrm{MHCl}:\left[\mathbf{H}^{+}\right]=5.0 \times 10^{-4} \mathbf{M}, \boldsymbol{p H}=-\boldsymbol{l o g}\left(5.0 \times 10^{-4}\right)=3.30$
c) $1.0 \times 10^{-11} \mathrm{MHCl}:\left[\mathbf{H}^{+}\right]=\mathbf{1 . 0} \times \mathbf{1 0}^{-\mathbf{1 1}} \mathbf{M}, \boldsymbol{p H}=-\log \left(\mathbf{1 . 0} \times \mathbf{1 0}^{-11}\right)=\mathbf{1 1 . 0 0}$
2. A solution is prepared by adding 50.0 mL of 0.0500 M HCl to 150 mL of $0.10 \mathrm{M} \mathrm{HNO}_{3}$. Calculate the concentrations of all the species in this solution. (hint: do a dissociation for each strong acid, AND recall what the solvent for these acids, $\mathrm{H}_{2} \mathrm{O}$.)

Answers: \quad Strong Acids $=100 \%$ dissociation, \quad Total Volume $=200 \mathrm{~mL}=0.2 \mathrm{~L}$
$\boldsymbol{H C l}: \frac{50 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.05 \mathrm{~mol}}{L}=0.0025 \mathrm{~mol} \quad \mathbf{H C l} \rightarrow \boldsymbol{H}^{+\boldsymbol{1}}+\mathrm{Cl}^{-1}$
$\boldsymbol{H N O}_{3}: \frac{150 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.10 \mathrm{~mol}}{L}=0.015 \mathrm{~mol}$

$$
\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+1}+\mathrm{NO}_{3}^{-1}
$$

$$
\begin{aligned}
& {\left[\mathbf{C l}^{\mathbf{- 1}}\right]=\frac{0.0025 \mathrm{~mol}}{0.2 \mathrm{~L}}=0.0125 \mathrm{M}} \\
& {\left[\mathbf{N O}_{3}^{-\mathbf{1}}\right]=\frac{0.015 \mathrm{~mol}}{0.2 \mathrm{~L}}=0.075 \mathrm{M}} \\
& {\left[\mathbf{H}^{+\mathbf{1}}\right]=\frac{(0.015 \mathrm{~mol}+0.0025 \mathrm{~mol})}{0.2 \mathrm{~L}}=0.0875 \mathrm{M}}
\end{aligned}
$$

3. Calculate the concentration of an aqueous HCl solution that has a $\mathrm{pH}=2.50$.

$$
\left[\mathrm{H}^{+1}\right]=\operatorname{Antilog}(-2.50)=3.16 \times 10^{-3} \mathrm{M}
$$

HCl is a strong acid, 100 \% dissociation

$$
\mathrm{HCl} \rightarrow \mathrm{H}^{+1}+\mathrm{Cl}^{-1}
$$

Therefore, $[\mathrm{HCl}]=\left[\mathrm{Cl}^{-1}\right]=\left[\mathrm{H}^{+1}\right]$
4. A 0.20 M solution of acetic acid has a $K_{a}=1.8 \times 10^{-5}$. Calculate the concentration of all the species present in the solution. Also, calculate the pH .

Answers: WEAK ACID ...

	$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$	\leftrightarrow	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-1}\right]$
\mathbf{I}	$0.20 M$	0	0		
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$0.20 M-x$		x	x	

$$
\begin{gathered}
K_{a}=1.8 \times 10^{-5}=\frac{\left[H^{+1}\right]\left[C_{2} H_{3} O_{2}^{-1}\right]}{\left[H C_{2} H_{3} O_{2}\right]^{2}}=\frac{x^{2}}{0.20-x}=\frac{x^{2}}{0.20} \\
1.8 \times 10^{-5}(0.2)=x^{2} ; x=\sqrt{3.6 \times 10^{-6}}=1.9 \times 10^{-3} \mathrm{M} \\
p H=-\log \left(1.9 \times 10^{-3}\right)=2.72
\end{gathered}
$$

5. Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for each solution.
a) $\mathrm{pH}=7.41$ (normal pH for blood),

$$
\left[\mathbf{H}^{+1}\right]=\operatorname{Antilog}(-7.41)=3.89 \times 10^{-8} \mathbf{M},\left[O H^{-1}\right]=\frac{1.00 \times 10^{-14}}{3.89 \times 10^{-8}}=2.57 \times 10^{-7} \mathrm{M}
$$

b) $\mathrm{pH}=13.00$

$$
\left[\mathbf{H}^{+1}\right]=\text { Antilog }(-13.4)=3.98 \times 1 \mathbf{1 0}^{-14} \mathbf{M},\left[O H^{-1}\right]=\frac{1.00 \times 10^{-14}}{3.98 \times 10^{-14}}=0.251 \mathrm{M}
$$

c) $\mathrm{pH}=3.20$

$$
\left[\mathbf{H}^{+1}\right]=\operatorname{Antilog}(-3.2)=6.31 \times 10^{-4} \mathbf{M},\left[O H^{-1}\right]=\frac{1.00 \times 10^{-14}}{6.31 \times 10^{-4}}=1.58 \times 10^{-11} \mathrm{M}
$$

d) $\mathrm{pOH}=3.20$
$\left[\mathrm{OH}^{-1}\right]=$ Antilog $(-3.2)=6.31 \times 1 \mathbf{1 0}^{-4} \mathbf{M},\left[\mathrm{H}^{+1}\right]=\frac{1.00 \times 10^{-14}}{6.31 \times 10^{-4}}=1.58 \times 10^{-11} \mathrm{M}$
e) $\mathrm{pOH}=9.30$
$\left[\mathrm{OH}^{-1}\right]=$ Antilog $(-9.3)=5.01 \times 1 \mathbf{1 0}^{-10} \mathbf{M},\left[\mathrm{H}^{+1}\right]=\frac{1.00 \times 10^{-14}}{5.01 \times 10^{-10}}=2.00 \times 10^{-5} \mathrm{M}$
6. Boric acid, $\mathrm{H}_{3} \mathrm{BO}_{3}$ is commonly used in eyewash solutions in chemistry laboratories to neutralize bases splashed in the eye. It acts as a monoprotic acid, but the dissociation reaction is slightly different from that of other acids.

$$
\mathrm{B}(\mathrm{OH})_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{B}(\mathrm{OH})_{4}^{-1}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})} \quad K_{a}=5.8 \times 10^{-10}
$$

Calculate the pH of a 0.50 M solution of boric acid
Answers: WEAK ACID ...

	$\left[\mathrm{B}(\mathrm{OH})_{3}\right]$		$\left[\mathrm{H}_{2} \mathrm{O}\right]$	\leftrightarrow	$\left[\mathrm{B}(\mathrm{OH})_{4}^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	$0.5 M$		-		0		0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$0.5 M-x$		-		x		x

$$
\begin{aligned}
& K_{a}=5.8 \times 10^{-10}=\frac{\left[B(O H)_{4}^{-1}\right]\left[H^{+1}\right]}{\left[B(O H)_{3}\right]^{2}}=\frac{x^{2}}{0.50-x}=\frac{x^{2}}{0.50} \\
& 5.8 \times 10^{-10}(0.50)=x^{2} ; x=\sqrt{2.90 \times 10^{-10}}=1.70 \times 10^{-5} \mathrm{M} \\
& {\left[\mathrm{H}^{+1}\right]=1.70 \times 10^{-5} \mathrm{M}, \quad \mathbf{p H}=-\log \left(1.70 \times 10^{-5}\right)=4.77}
\end{aligned}
$$

7. Hypobromous acid, HOBr , is a weak acid that dissociates in water, as represented in the equation below:

$$
\operatorname{HOBr}_{(\mathrm{aq)}} \leftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OBr}^{-}(\mathrm{aq}) \quad K_{a}=2.3 \times 10^{-9}
$$

Calculate the pH of a 2.50 M HOBr solution
Answers:
WEAK ACID ...

	$[\mathrm{HOBr}]$	\leftrightarrow	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{OBr}^{-1}\right]$
\mathbf{I}	$2.50 M$		0		0
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$2.50 M-x$		x		x

$$
K_{a}=2.3 \times 10^{-9}=\frac{\left[\mathrm{OBr}^{-1}\right]\left[H^{+1}\right]}{[H O B r]^{2}}=\frac{x^{2}}{2.50-x}=\frac{x^{2}}{2.50}
$$

$2.3 \times 10^{-9}(2.50)=x^{2} ; x=\sqrt{5.75 \times 10^{-9}}=7.58 \times 10^{-5} \mathrm{M}$

$$
\left[\mathrm{H}^{+1}\right]=7.58 \times 10^{-5} \mathrm{M}, \quad \mathbf{p H}=-\log \left(7.58 \times 10^{-5}\right)=\mathbf{4 . 1 2}
$$

