AP CHEMISTRY

TOPIC 7: ACIDs \& BASEs, PART B
Examples, Part II
Day 76:

- pH and pOH scale
- pH of strong acids
- pH of weak acids

1. a) Calculate the $\left[\mathrm{H}^{+1}\right]$ concentration for a solution with a pH of 4.22

$$
p H=4.22, \quad\left[H^{+1}\right]=\operatorname{antilog}(-4.22)=6.03 \times 10^{-5}
$$

b) Calculate the $\left[\mathrm{OH}^{-1}\right]$ concentration for a solution with a pH of 3.75
$p H=3.75,\left[H^{+1}\right]=\operatorname{antilog}(-3.75)=1.78 \times 10^{-4},\left[O H^{-1}\right]=\frac{1.00 \times 10^{-14}}{\left[H^{+1}\right]}=\frac{1.00 \times 10^{-14}}{1.78 \times 10^{-4}}=5.62 \times 10^{-11}$
c) Calculate the pOH for a solution with a $\left[\mathrm{H}^{+1}\right]$ concentration of 7.83×10^{-12}.

$$
\begin{gathered}
{\left[O H^{-1}\right]=\frac{1.00 \times 10^{-14}}{\left[H^{+1}\right]}=\frac{1.00 \times 10^{-14}}{7.83 \times 10^{-12}}=1.28 \times 10^{-3}, \quad p O H=-\log \left(1.28 \times 10^{-3}\right)=2.89} \\
\text { OR } \quad p O H=14-\left(-\log \left(7.83 \times 10^{-12}\right)\right)=2.89
\end{gathered}
$$

d) Calculate the pH for a strong acid with an initial concentration of $5.55 \times 10^{-3} \mathrm{M}$.

$$
\begin{gathered}
\mathrm{HA} \rightarrow \mathrm{H}^{+1}+\mathrm{A}^{-1} \\
{\left[H^{+1}\right]=5.55 \times 10^{-3} M, p H=-\log \left(5.55 \times 10^{-3}\right)=2.26}
\end{gathered}
$$

2. A solution is prepared by adding 3.00 L of $0.253 \mathrm{M} \mathrm{HClO}_{4}$ to 1.35 L of 1.13 M HBr . Calculate the concentrations of all the species in this solution. (hint: do a dissociation for each strong acid, AND recall what the solvent for these acids, $\mathrm{H}_{2} \mathrm{O}$.)
Answers: \quad Strong Acids $=100$ \% dissociation, \quad Total Volume $=4.35$ L
$\mathrm{HClO}_{4}: \frac{3.00 \mathrm{~L}}{} \times \frac{0.253 \mathrm{~mol}}{L}=0.759 \mathrm{~mol}$
$\mathbf{H B r}: \frac{1.35 L}{L} \times \frac{1.13 \mathrm{~mol}}{L}=1.5255 \mathrm{~mol}$

$$
\mathrm{HClO}_{3} \rightarrow \mathrm{H}^{+1}+\mathrm{ClO}_{3}^{-1}
$$

$$
\mathrm{HBr} \rightarrow \mathrm{H}^{+1}+\mathrm{Br}^{-1}
$$

$$
\left[\mathbf{H C l O}_{4}\right]=\left[\mathbf{C l O}_{4}^{-\mathbf{1}}\right]=\frac{0.750 \mathrm{~mol}}{4.35 \mathrm{~L}}=0.172 \mathrm{M}=\left[\mathbf{H}^{+\mathbf{1}}\right]
$$

$$
[\mathbf{H B r}]=\left[\mathbf{B r}^{-\mathbf{1}}\right]=\frac{1.5255 \mathrm{~mol}}{4.35 \mathrm{~L}}=0.351 \mathrm{M}=\left[\mathbf{H}^{+\mathbf{1}}\right]
$$

$$
\left[\mathbf{O H}^{-1}\right]=\frac{1.00 \times 10^{-14}}{\left[H^{+}\right]}=1.91 \times 10^{-14} \mathrm{M}
$$

$$
\begin{gathered}
{\left[\mathrm{H}^{+1}\right] 0.172 M+0.351 M} \\
{\left[\mathrm{H}^{+1}\right]=0.523 M}
\end{gathered}
$$

2. Calculate the pH of a 5.40 M benzoic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, solution - a weak acid with a $K_{a}=6.52 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

Step 1: write the dissociation reaction for $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$:

$$
\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+1}+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}{ }_{\text {(aq) }}
$$

Step 2: write the equilibrium expression:

$$
K_{a}=6.52 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}
$$

Step 3: make an ICE chart:

	$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]$	\leftrightarrow	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-1}\right]$
\mathbf{I}	$5.40 M$		0	0	
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$5.40 M-x$		x	x	

Step 4: set up the algebra to solve for " x "

$$
K_{a}=6.52 \times 10^{-5}=\frac{(x)(x)}{(5.40-x)}
$$

again, since x will be small, the equilibrium concentration for HF will go from ($1.0-\mathrm{x}$) to (1.0)

$$
K_{a}=6.52 \times 10^{-5}=\frac{(x)(x)}{(5.40)} ; 3.52 \times 10^{-4}=x^{2} ; \sqrt{3.52 \times 10^{-4}}=x=0.0188
$$

Step 5: write the equilibrium concentrations for each:

$$
\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=5.40 \mathrm{M},\left[\mathrm{H}^{+1}\right]=0.0188 \mathrm{M},\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}\right]=0.0188 \mathrm{M}
$$

Step 6: calculate the pH from $\left[\mathrm{H}^{+}\right.$]

$$
\mathrm{pH}=-\log (0.0188)=1.73
$$

4. Calculate the pOH of a 0.50 M hypochlorous acid, HClO , solution - a weak acid with a $K_{a}=3.00 \times 10^{-8}$ at $25^{\circ} \mathrm{C}$.

Step 1: write the dissociation reaction for HClO :

$$
\mathrm{HClO}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+1}+\mathrm{ClO}_{(\mathrm{aq})}^{-1}
$$

Step 2: write the equilibrium expression:

$$
K_{a}=3.00 \times 10^{-8}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}
$$

Step 3: make an ICE chart:

	$[\mathrm{HClO}]$	\leftrightarrow	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{ClO}^{-1}\right]$
\mathbf{I}	$0.50 M$		0		0
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$0.50 M-x$		x	x	

Step 4: set up the algebra to solve for " x "

$$
K_{a}=3.00 \times 10^{-8}=\frac{(x)(x)}{(0.50-x)}
$$

again, since x will be small, the equilibrium concentration for HF will go from ($1.0-\mathrm{x}$) to (1.0)

$$
K_{a}=3.00 \times 10^{-8}=\frac{(x)(x)}{(0.50)} ; 1.50 \times 10^{-8}=x^{2} ; \sqrt{1.50 \times 10^{-8}}=x=1.22 \times 10^{-4}
$$

Step 5: write the equilibrium concentrations for each:

$$
\left[\mathrm{HClO}^{-1}\right]=0.50 \mathrm{M},\left[\mathrm{H}^{+}\right]=1.22 \times 10^{-4} \mathrm{M},\left[\mathrm{ClO}^{-1}\right]=0.0188 \mathrm{M}
$$

Step 6: calculate the pOH from [H^{+}]

$$
\begin{gathered}
\mathrm{pH}=-\log \left(1.22 \times 10^{-4}\right)=3.91 \\
\mathrm{pOH}=14-3.91=10.09 \\
\mathrm{OR} \\
\mathrm{pOH}=14-\left(-\log \left(1.22 \times 10^{-4}\right)\right)=10.09
\end{gathered}
$$

