AP CHEMISTRY

TOPIC 7: ACIDS & BASES, PART C

- Bases
 Weak bases
- 1. Write the reaction and the corresponding K_b equilibrium expression for each of the following substances acting as bases in water.

a)
$$\operatorname{NH}_3$$
 $\operatorname{NH}_3(aq) + H_2O_{(1)} \leftrightarrow \operatorname{NH}_4^{+1}(aq) + OH^{-1}(aq), \quad \frac{\left\lfloor \operatorname{NH}_4^{+1} \right\rfloor \left\lfloor OH^{-1} \right\rfloor}{\left\lfloor \operatorname{NH}_3 \right\rfloor}$

b)
$$C_5H_5N$$
 $C_5H_5N_{(aq)} + H_2O_{(1)} \leftrightarrow C_5H_5NH^{+1}_{(aq)} + OH^{-1}_{(aq)}, \frac{\left[C_5H_5NH^{+1}\right]\left[OH^{-1}\right]}{\left[C_5H_5N\right]}$

c) Aniline,
$$C_6H_5NH_2$$
 $C_6H_5NH_2$ (aq) + $H_2O_{(1)} \leftrightarrow C_6H_5NH_3^{+1}(aq)$ + $OH^{-1}(aq)$, $\frac{\left[C_6H_5NH_3^{+1}\right]\left[OH^{-1}\right]}{\left[C_6H_5NH_2\right]}$

- 2. Calculate the pH of the following substance.
 - a) 0.10 *M* NaOH [OH⁻¹] = 0.10 *M*; pOH = -log(0.10) = 1.00, pH = 14 1 = 13.00
 - b) $1.0 \ge 10^{-10} M \text{ LiOH}$ [OH⁻¹] = 1.0 $\ge 10^{-10} M$; $pOH = -log(1.0 \ge 10^{-10}) = 10.00$, pH = 14 10 = 4.00
 - c) $4.0 \ge 10^{-5} M$ KOH [OH⁻¹] = $4.0 \ge 10^{-5} M$; $pOH = -log(4.0 \ge 10^{-5}) = 4.40$, pH = 14 4.4 = 9.60
- 3. Calculate the concentration of an aqueous NaOH solution that has a pH = 10.50.

$$pH = 10.50, \ pOH = 14 - 10.50 = 3.50, \ [OH^{-1}] = antilog(-3.50) = 3.16 \times 10^{-4} M = [NaOH]$$

NaOH is a strong base = 100% *dissociation.*

4. For the reaction of hydrazine (N_2H_4) in water.

 $H_2NNH_2_{(aq)} + H_2O_{(l)} \leftrightarrow H_2NNH_3^{+1}_{(aq)} + OH^{-1}_{(aq)}$

 $K_b = 3.0 \times 10^{-6}$. Calculate the concentration of all the species and the pH of a 2.0 *M* solution of hydrazine in water. *Hydrazine is a WEAK BASE*...

	[H ₂ NNH ₂]	+	[H ₂ O]	\rightleftharpoons	[H ₂ NNH ₃ ⁺¹]	+	[OH ⁻¹]
Ι	2.0 M		-		0		0
С	- <i>x</i>		-		+x		+x
Ε	2.0 - x		-		x		x

$$K_{b} = 3.0 \times 10^{-6} = \frac{\left[H_{2}NNH_{3}^{+1}\right]\left[OH^{-1}\right]}{\left[H_{2}NNH_{3}\right]} = \frac{x^{2}}{2.0 - x} = \frac{x^{2}}{2.0}$$

3.0 × 10⁻⁶ (2.0) = x²; x = $\sqrt{6.0 \times 10^{-6}}$ = 2.45×10⁻³ M
[OH⁻¹] = 2.45 x 10⁻³; pOH = -log (2.45 x 10⁻³) = 2.61; **pH** = 14 - 2.61 = **11.39**

5. Calculate the pOH for a 2.75 *M* solution of an aniline, $C_6H_5NH_2$, solution. $K_b = 3.8 \times 10^{-10}$.

	[C ₆ H ₅ NH ₂]	+	[H ₂ O]	\rightleftharpoons	$[C_6H_5NH_3^{+1}]$	+	[OH ⁻¹]
Ι	2.75 M		-		0		0
С	- <i>x</i>		-		+x		+x
E	2.75 - x		-		x		x

Answers:

WEAK BASE ...

$$K_{b} = 3.8 \times 10^{-10} = \frac{\left[C_{6}H_{5}NH_{3}^{+1} \right] \left[OH^{-1} \right]}{\left[C_{6}H_{5}NH_{2} \right]} = \frac{(x)(x)}{2.75 - x} = \frac{x^{2}}{2.75}$$

$$K_{b} = 3.8 \times 10^{-10} = \frac{x^{2}}{2.75}; \quad \left(3.8 \times 10^{-10} \right) \left(2.75 \right) = x^{2}$$
$$x = \sqrt{1.045 \times 10^{-9}} = 3.23 \times 10^{-5} M = \left[OH^{-1} \right]$$
$$pOH = -\log \left(3.23 \times 10^{-5} \right) = 4.49$$

6. Calculate the pH of a 0.0045 *M* solution of C₂H₅NH₂ solution. $K_b = 5.6 \times 10^{-4}$. (you may **NOT** use the 5 % rule for this problem.)

Answers: WEAK BASE ...

	[C ₂ H ₅ NH ₂]	+	[H ₂ O]	\downarrow	[C ₂ H ₅ NH ₃ ⁺¹]	+	[OH ⁻¹]
Ι	0.0045 M		-		0		0
С	- <i>x</i>		-		+x		+x
Ε	0.0045 - x		-		X		x

$$K_{b} = 5.6 \times 10^{-4} = \frac{\left[C_{2}H_{5}NH_{3}^{+1} \right] \left[OH^{-1} \right]}{\left[C_{2}H_{5}NH_{2} \right]} = \frac{x^{2}}{0.0045 - x}$$

We cannot "drop" the x in this problem, the percent of error is greater than 5 %
You need to know how to do equilibrium problems that use the quadratic equation – I will place a question like this on the quiz !!! Everyone SHOULD know how to use the quadratic equation (WITHOUT a graphing calculator !!!)

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$K_b = 5.6 \times 10^{-4} = \frac{x^2}{0.0045 - x}$$

$$\left(5.6 \times 10^{-4}\right) \left(0.0045 - x\right) = x^2$$

$$2.52 \times 10^{-6} - 5.6 \times 10^{-4} = x^2$$

$$0 = x^2 + 5.6 \times 10^{-4} x - 2.52 \times 10^{-6}$$

$$\frac{-(5.6 \times 10^{-4}) + \sqrt{(5.6 \times 10^{-4})^2 - 4(1)(-2.52 \times 10^{-6})}}{2(1)}$$

$$x = 1.33 \times 10^{-3}$$

$$pOH = -\log(0.00133) = 2.88$$

$$pH = 14 - 2.88 = 11.12$$

If you did not use the quadratic equation, $x = 1.58 \times 10^{-3}$ (15.8% error), and your WRONG pH would have been equal to 11.20