- Nature of Acids and Bases
- pH and pOH scale
- Bases
- Acid Strength
- pH of strong acids
- Weak bases
- Water as an acid and a base
- pH of weak acids

1. What is the conjugate base of the bicarbonate ion, HCO_{3}^{-1} ?

If the question is asking for the conjugate base of something, ASSUME that something is an ACID, therefore the answer is $\mathrm{CO}_{3}{ }^{-2}$
2. Write the dissociation reaction for each of the following acids in water and identify the conjugate acid-base pairs:
a. $\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}$

$\mathbf{H C}_{2} \mathbf{H}_{2} \mathrm{ClO}_{2}$	+	$\mathbf{H}_{\mathbf{2}} \mathbf{O}_{(1)}$	\rightleftharpoons	$\mathbf{C}_{2} \mathbf{H}_{2} \mathbf{C l O}_{2}{ }^{-1}$	+	$\mathbf{H}_{3} \mathbf{O}^{+1}$
A		B		CB		CA

b. HCN

$\boldsymbol{H C N}$	+	$\boldsymbol{H}_{\mathbf{2}} \mathbf{O}_{(1)}$	\rightleftharpoons	$\boldsymbol{C N}^{-1}$	+	$\boldsymbol{H}_{3} \mathbf{O}^{+\boldsymbol{1}}$
A		B		CB		CA

c. HNO_{2}

HNO_{2}	+	$\mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{I})$	\rightleftharpoons	$\mathbf{N O}_{\mathbf{2}}{ }^{\mathbf{1}}$	+	$\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+\boldsymbol{1}}$
A		B		CB		CA

3. Write the equilibrium expression for each of the reactions (from question 2.)
a) $K=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}^{-1}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}\right]}$
OR $\quad K=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}^{-1}\right]\left[\mathrm{H}^{+1}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}\right]}$
b) $K=\frac{\left[\mathrm{CN}^{-1}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]}{[\mathrm{HCN}]}$
OR $\quad K=\frac{\left[C N^{-1}\right]\left[H^{+1}\right]}{[H C N]}$
c) $K=\frac{\left[\mathrm{NO}_{2}^{-1}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]}{\left[\mathrm{HNO}_{2}\right]}$
OR $\quad K=\frac{\left[\mathrm{NO}_{2}^{-1}\right]\left[\mathrm{H}^{+1}\right]}{\left[\mathrm{HNO}_{2}\right]}$
4. Calculate the equilibrium constant, K, at a certain temperature for the reaction:

$$
2 \mathrm{NH}_{3(\mathrm{~g})} \rightleftharpoons 3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})}
$$

if the equilibrium concentration for [H_{2}] is 0.850 M , and the initial concentration for [NH_{3}] was 3.22 M .
Answer: We CANNOT use the 5% rule for this type of question !!!

	$2\left[\mathrm{NH}_{3}\right]$	\rightleftharpoons	$3\left[\mathrm{H}_{2}\right]$	+	$\left[\mathrm{N}_{2}\right]$
\mathbf{I}	$3.22 M$		0		0
\mathbf{C}	$-2 x=-0.566$		$+3 x=0.850$		$+x=(0.850 / 3)=0.283$
\mathbf{E}	$3.22-0.566=2.654$		0.850		0.283

$$
K=\frac{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]}{\left[\mathrm{NH}_{3}\right]^{2}}=\frac{(0.850)^{3}(0.283)}{(2.654)^{2}}=2.47 \times 10^{-2}
$$

5. If the equilibrium constant at $444{ }^{\circ} \mathrm{C}$ for

$$
2 \mathrm{HI}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}
$$

is 1.39×10^{-2} calculate the equilibrium constant for the reverse reaction at $444^{\circ} \mathrm{C}$.

Answer:

$$
K=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=1.39 \times 10^{-2} \quad \text { THERFORE, } \quad K^{\prime}=\frac{[\mathrm{HI}]^{2}}{\left[H_{2}\right]\left[I_{2}\right]}=\frac{1}{1.39 \times 10^{-2}}=71.9
$$

6. Fill in the missing information in the following table:

pH	pOH	$\left[\mathrm{H}^{+1}\right]$	$\left[\mathrm{OH}^{-1}\right]$	acid, base or neutral
11.93	$\mathbf{2 . 0 7}$	$\mathbf{1 . 1 7 \times \mathbf { 1 0 } ^ { - 1 2 }}$	$\mathbf{8 . 5 1 \times 1 0 ^ { - 3 }}$	$\boldsymbol{B A S E}$
$\mathbf{4 . 4 6}$	$\mathbf{9 . 5 4}$	3.45×10^{-5}	$\mathbf{2 . 9 0 \times 1 0 ^ { - 1 0 }}$	ACID
$\mathbf{6 . 6 5}$	7.35	$\mathbf{2 . 2 4 \times 1 \mathbf { 1 0 } ^ { - \mathbf { 7 } }}$	$\mathbf{4 . 4 7 \times \mathbf { 1 0 } ^ { - 8 }}$	ACID
$\mathbf{1 2 . 7 6}$	$\mathbf{1 . 2 4}$	$\mathbf{1 . 7 2 \times \mathbf { 1 0 } ^ { - \mathbf { 1 3 } }}$	5.8×10^{-2}	BASE

7. The pOH of a 400 mL solution of HNO_{3} is 12.44 . How many grams of HNO_{3} are in solution?

$$
\begin{gathered}
\mathrm{HNO}_{3} \text { is a STRONG acid } \\
{\left[\mathrm{OH}^{-1}\right]=\operatorname{antilog}(-12.44)=3.63 \times 1 \mathbf{1 0}^{-13} \mathbf{M},} \\
{\left[H^{+1}\right]=\frac{1.00 \times 10^{-14}}{3.63 \times 10^{-13}}=0.0275 \mathrm{M}=\left[\mathrm{HNO}_{3}\right]} \\
\frac{400 \mathrm{~mL}}{4} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.0275 \mathrm{~mol}}{L} \times \frac{63 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{HNO}_{3}}=0.69 \mathrm{~g}
\end{gathered}
$$

8. Calculate the pH of a 0.237 M solution of benzoic acid, $\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{COO}\left(K_{a}=6.14 \times 10^{-5}\right)$

	$\left[\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{COO}\right]$	\rightleftharpoons	$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	$0.237 M$		0		0
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$0.237-x$		x		x

$$
K_{a}=6.14 \times 10^{-5}=\frac{\left[C_{6} H_{5} \mathrm{COO}^{-1}\right]\left[H^{+1}\right]}{\left[C_{6} H_{5} \mathrm{COOH}\right]}=\frac{x^{2}}{0.237-x}=\frac{x^{2}}{0.237}
$$

$6.14 \times 10^{-5}(0.237)=x^{2} ; x=\sqrt{1.46 \times 10^{-5}}=3.81 \times 10^{-3} \mathrm{M}$

$$
\begin{gathered}
{\left[\mathrm{H}^{+1}\right]=3.81 \times 10^{-3}} \\
\boldsymbol{p H}=-\log \left(3.81 \times 1 \mathbf{0}^{-3}\right)=2.42
\end{gathered}
$$

9. Calculate the K_{a} of a $0.0062 M$ weak monoprotic acid with a pH of 3.44 . (Do not use the 5% rule, and do not use the quadratic equation !!!)
monoprotic acid: an acid with one acidic proton (hydrogen ion).

$$
\begin{gathered}
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+1}+\mathrm{A}^{-1} \\
\mathrm{pH}=3.44
\end{gathered}
$$

$\left[\mathrm{H}^{+1}\right]=\operatorname{antilog}(-3.44)=3.63 \times 10^{-4} \mathrm{M}$

	$[\mathrm{HA}]$	\rightleftharpoons	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{A}^{-1}\right]$
\mathbf{I}	0.0062 M		0	0	
\mathbf{C}	$-x=-3.63 \times 10^{-4}$		$+x=+3.63 \times 10^{-4}$	$+x=+3.63 \times 10^{-4}$	
\mathbf{E}	$0.0062-0.000363=5.837 \times 10^{-3}$		3.63×10^{-4}		3.63×10^{-4}

$$
K_{a}=\frac{\left[H^{+1}\right]\left[A^{-1}\right]}{[H A]}=\frac{\left[3.63 \times 10^{-4}\right]\left[3.63 \times 10^{-4}\right]}{\left[5.837 \times 10^{-3}\right]}=2.26 \times 10^{-5}
$$

