AP CHEMISTRY

TOPIC 7: ACIDS & BASES, REVIEW, PART I

Day 79:

- Nature of Acids and Bases
 Acid Strength
 Water as an acid and a base
- pH and pOH scale
- Acid Strength pH of strong acids
- pH of weak acids
- Bases Weak bases
- 1. What is the conjugate base of the bicarbonate ion, HCO_3^{-1} ?

If the question is asking for the conjugate base of something, ASSUME that something is an ACID, therefore the answer is CO_3^{-2}

- 2. Write the dissociation reaction for each of the following acids in water and identify the conjugate acid-base pairs:
 - a. $HC_2H_2ClO_2$

	$HC_2H_2ClO_2$	+	$H_2O_{(l)}$	1	$C_2H_2ClO_2^{-1}$	+	H_3O^{+1}
	А		В		CB		CA
-							
	HCN	+	$H_2O_{(l)}$	\rightleftharpoons	CN ⁻¹	+	H ₃ O ⁺¹

c. HNO₂

b. HCN

HNO ₂	+	$H_2O_{(l)}$	\rightleftharpoons	NO_2^{-1}	+	H_3O^{+1}
А		В		СВ		CA

3. Write the equilibrium expression for each of the reactions (from question 2.)

a)
$$K = \frac{\left[\begin{array}{c} C_{2}H_{2}ClO_{2}^{-1}\end{array}\right]\left[\begin{array}{c} H_{3}O^{+1}\end{array}\right]}{\left[\begin{array}{c} HC_{2}H_{2}ClO_{2}\end{array}\right]} \quad OR \quad K = \frac{\left[\begin{array}{c} C_{2}H_{2}ClO_{2}^{-1}\end{array}\right]\left[\begin{array}{c} H^{+1}\end{array}\right]}{\left[\begin{array}{c} HC_{2}H_{2}ClO_{2}\end{array}\right]}$$

b)
$$K = \frac{\left[\begin{array}{c} CN^{-1}\end{array}\right]\left[\begin{array}{c} H_{3}O^{+1}\end{array}\right]}{\left[\begin{array}{c} HCN\end{array}\right]} \quad OR \quad K = \frac{\left[\begin{array}{c} CN^{-1}\end{array}\right]\left[\begin{array}{c} H^{+1}\end{array}\right]}{\left[\begin{array}{c} HCN\end{array}\right]}$$

c)
$$K = \frac{\left[\begin{array}{c} NO_{2}^{-1}\end{array}\right]\left[\begin{array}{c} H_{3}O^{+1}\end{array}\right]}{\left[\begin{array}{c} HNO_{2}\end{array}\right]} \quad OR \quad K = \frac{\left[\begin{array}{c} NO_{2}^{-1}\end{array}\right]\left[\begin{array}{c} H^{+1}\end{array}\right]}{\left[\begin{array}{c} HNO_{2}\end{array}\right]}$$

4. Calculate the equilibrium constant, *K*, at a certain temperature for the reaction:

$$2 \operatorname{NH}_{3(g)} \rightleftharpoons 3 \operatorname{H}_{2(g)} + \operatorname{N}_{2(g)}$$

if the equilibrium concentration for $[H_2]$ is 0.850 *M*, and the initial concentration for $[NH_3]$ was 3.22 *M*. *Answer: We <u>CANNOT</u> use the 5 % rule for this type of question !!!*

	2 [NH ₃]	\rightleftharpoons	3 [H ₂]	+	[N ₂]
Ι	3.22 M		0		0
С	-2x = -0.566		+3x = 0.850		+x = (0.850 / 3) = 0.283
Ε	3.22 - 0.566 = 2.654		0.850		0.283

$$K = \frac{\left[\begin{array}{c}H_2\end{array}\right]^3 \left[\begin{array}{c}N_2\end{array}\right]}{\left[\begin{array}{c}NH_3\end{array}\right]^2} = \frac{\left(0.850\right)^3 \left(0.283\right)}{\left(2.654\right)^2} = 2.47 \times 10^{-2}$$

5. If the equilibrium constant at 444 0 C for

$$2 \operatorname{HI}_{(g)} \rightleftharpoons \operatorname{H}_{2(g)} + \operatorname{I}_{2(g)}$$

is 1.39×10^{-2} calculate the equilibrium constant for the reverse reaction at 444 0 C.

Answer:

$$K = \frac{\begin{bmatrix} H_2 \end{bmatrix} \begin{bmatrix} I_2 \end{bmatrix}}{\begin{bmatrix} HI \end{bmatrix}^2} = 1.39 \times 10^{-2} \quad \text{THERFORE,} \quad K' = \frac{\begin{bmatrix} HI \end{bmatrix}^2}{\begin{bmatrix} H_2 \end{bmatrix} \begin{bmatrix} I_2 \end{bmatrix}} = \frac{1}{1.39 \times 10^{-2}} = 71.9$$

6. Fill in the missing information in the following table:

pH	рОН	$[H^{+1}]$	[OH ⁻¹]	acid, base or neutral
11.93	2.07	1.17×10^{-12}	8.51×10^{-3}	BASE
4.46	9.54	3.45 x 10 ⁻⁵	2.90×10^{-10}	ACID
6.65	7.35	2.24×10^{-7}	4.47×10^{-8}	ACID
12.76	1.24	1.72×10^{-13}	5.8 x 10 ⁻²	BASE

7. The pOH of a 400 mL solution of HNO_3 is 12.44. How many grams of HNO_3 are in solution?

HNO₃ is a STRONG acid

$$[OH^{-1}] = antilog(-12.44) = 3.63 \times 10^{-13} M,$$

$$\begin{bmatrix} H^{+1} \end{bmatrix} = \frac{1.00 \times 10^{-14}}{3.63 \times 10^{-13}} = 0.0275 \ M = \begin{bmatrix} HNO_3 \end{bmatrix}$$

$$\frac{400 \ mL}{1000 \ mL} \times \frac{1 \ L}{1000 \ mL} \times \frac{0.0275 \ mol}{L} \times \frac{63 \ g}{1 \ mol \ HNO_3} = 0.69 \ g$$

8. Calculate the pH of a 0.237 *M* solution of benzoic acid, HC₆H₅COO ($K_a = 6.14 \times 10^{-5}$)

	[HC ₆ H ₅ COO]	\rightleftharpoons	$[C_6H_5COO^{-1}]$	+	[H ⁺¹]
Ι	0.237 M		0		0
С	- <i>x</i>		+x		+x
Ε	0.237 - x		X		x

$$K_{a} = 6.14 \times 10^{-5} = \frac{\left[C_{6}H_{5}COO^{-1} \right] \left[H^{+1} \right]}{\left[C_{6}H_{5}COOH \right]} = \frac{x^{2}}{0.237 - x} = \frac{x^{2}}{0.237}$$

$$6.14 \times 10^{-5} (0.237) = x^{2} ; x = \sqrt{1.46 \times 10^{-5}} = 3.81 \times 10^{-3} M$$

$$[H^{+1}] = 3.81 \times 10^{-3}$$

$$pH = -log(3.81 \times 10^{-3}) = 2.42$$

9. Calculate the K_a of a 0.0062 *M* weak monoprotic acid with a pH of 3.44. (Do not use the 5 % rule, and do not use the quadratic equation !!!)

monoprotic acid: an acid with one acidic proton (hydrogen ion).

HA
$$\rightleftharpoons$$
 H⁺¹ + A⁻¹
pH = 3.44
[H⁺¹] = antilog (-3.44) = 3.63 x 10⁻⁴ M

	[HA]	1	[H ⁺¹]	+	[A ⁻¹]
Ι	0.0062 M		0		0
С	$-x = -3.63 \times 10^{-4}$		$+x = +3.63 \times 10^{-4}$		$+x = +3.63 \times 10^{-4}$
Ε	$0.0062 - 0.000363 = 5.837 \times 10^{-3}$		3.63 x 10 ⁻⁴		3.63 x 10 ⁻⁴

$$K_{a} = \frac{\left[\begin{array}{c}H^{+1}\end{array}\right]\left[\begin{array}{c}A^{-1}\end{array}\right]}{\left[\begin{array}{c}HA\end{array}\right]} = \frac{\left[\begin{array}{c}3.63\times10^{-4}\end{array}\right]\left[\begin{array}{c}3.63\times10^{-4}\end{array}\right]}{\left[\begin{array}{c}5.837\times10^{-3}\end{array}\right]} = 2.26\times10^{-5}$$