CLEARY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS.

$$
\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1} \underset{(\mathrm{aq})}{ }+\mathrm{H}_{(\mathrm{aq})}^{+1} \quad K_{a}=6.4 \times 10^{-5}
$$

1. Benzoic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, ionizes in water according to the equation above.
(a) Write the equilibrium-constant expression for the reaction.

$$
K_{a}=\frac{\left\lfloor C_{7} H_{5} O_{2}^{-1}\right\rfloor\left\lfloor H^{+1}\right\rfloor}{\left[\mathrm{HC}_{7} H_{5} \mathrm{O}_{2}\right]}
$$

(b) Calculate the pH of 0.567 M solution of benzoic acid.

	$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]$	\rightleftharpoons	$\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	0.567 M		0		0
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$0.567 \mathrm{M}-x$		x		x

$$
\begin{gathered}
K_{a}=\frac{\left\lfloor C_{7} H_{5} O_{2}^{-1}\right\rfloor\left\lfloor H^{+1}\right\rfloor}{\left[H C_{7} H_{5} O_{2}\right]}=\frac{x^{2}}{0.567-x}=\frac{x^{2}}{0.567}=6.4 \times 10^{-5} \\
x^{2}=(0.567)\left(6.4 \times 10^{-5}\right), \quad x=\sqrt{3.63 \times 10^{-5}}=6.02 \times 10^{-3} \\
{\left[\mathrm{H}^{+1}\right]=6.02 \times 10^{-3} \mathrm{M}} \\
\mathbf{p H}=-\log \left(6.02 \times 10^{-3}\right)=\mathbf{2 . 2 2}
\end{gathered}
$$

(c) A 0.763 g sample of lithium benzonate, $\mathrm{LiC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, is added to a 75.0 mL sample of a 0.567 M solution of benzoic acid. Assuming that no change in the volume of the solution occurs, calculate each of the following.
(i) The concentration of the benzonate ion, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}$ (aq), in the solution.

$$
\begin{gathered}
\# \mathrm{~mol} \mathrm{LiC} \\
7 \\
\mathrm{H}_{5} \mathrm{O}_{2}=
\end{gathered} \frac{0.763 \mathrm{~g} \mathrm{LiC}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{LiC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{128.05 \mathrm{~g}}=5.96 \times 10^{-3} \mathrm{~mol}}{\mathbf{L i C}_{7} \mathbf{H}_{5} \mathbf{O}_{2} \rightarrow \mathbf{L i}^{+1}+\mathrm{C}_{7} \mathbf{H}_{5} \mathbf{O}_{2}^{-1}}
$$

(Li^{+1} is a conjugate of a strong base, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-1}$ is a conjugate of weak acid)

$$
\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}\right]=\frac{5.96 \times 10^{-3} \mathrm{~mol}}{0.075 \mathrm{~L}}=0.0794 \mathrm{M}
$$

(ii) The concentration of the $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ ion in the solution.

	$\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}\right]$	+	HOH	\rightleftharpoons	$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	$0.0794 M$		-		0.567 M		~ 0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$0.0794-x$		-		$0.567-x$		$\left[\mathrm{OH}^{-1}\right]$

$$
\begin{gathered}
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{6.40 \times 10^{-5}}=1.56 \times 10^{-10} \\
K_{b}=\frac{\left[H C_{7} H_{5} O_{2}\right]\left[O H^{-1}\right]}{\left[C_{7} H_{5} O_{2}^{-1}\right]}=\frac{(0.567+x)\left[O H^{-1}\right]}{(0.0794-x)}=\frac{(0.567)\left[O H^{-1}\right]}{(0.0794)}=1.56 \times 10^{-10} \\
{\left[O H^{-1}\right]}
\end{gathered}=\frac{\left(1.56 \times 10^{-10}\right)(0.0794)}{(0.567)}=2.19 \times 10^{-11} .
$$

The methanoate ion, $\mathrm{HCO}_{2}{ }^{-1}{ }_{\text {(aq) }}$, reacts with water to form methanoic acid and hydroxide, as shown in the following equation.

$$
\mathrm{HCO}_{2}^{-1}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{2(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-1}
$$

(d) Given that [OH^{-}] is $4.18 \times 10^{-6} \mathrm{M}$ in a 0.309 M solution of sodium methanoate, calculate each of the following.
(i) The value of K_{b} for the methanoate ion, $\mathrm{HCO}_{2}^{-1}{ }^{-1}$ (aq).

$$
\mathrm{NaHCO}_{2} \rightarrow \mathrm{Na}^{+1}+\mathrm{HCO}_{2}^{-1}
$$

(Na^{+1} is a conjugate of a strong base, HCO_{2}^{-1} is a conjugate of weak acid)

	$\left[\mathrm{HCO}_{2}{ }^{-1}\right]$	+	HOH	\rightleftharpoons	$\left[\mathrm{H}_{2} \mathrm{CO}_{2}\right]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	0.309 M		-		0		0
\mathbf{C}	$-x$		-		$+x=4.18 \times 10^{-6}$		$+x=4.18 \times 10^{-6}$
\mathbf{E}	$0.309-4.18 \times 10^{-6}$		-		4.18×10^{-6}		4.18×10^{-6}

$$
K_{b}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-1}\right]}{\left[\mathrm{HCO}_{2}^{-1}\right]}=\frac{\left(4.18 \times 10^{-6}\right)^{2}}{\left(0.309-4.18 \times 10^{-6}\right)}=5.65 \times 10^{-11}
$$

(ii) The value of K_{a} for methanoic acid, $\mathrm{H}_{2} \mathrm{CO}_{2}$ (aq)

$$
K_{a}=\frac{K_{w}}{K_{b}}=\frac{1.00 \times 10^{-14}}{5.65 \times 10^{-11}}=1.77 \times 10^{-4}
$$

(e) Which acid is stronger, benzoic acid or methanoic acid? Justify your answer.
$K_{a}=6.40 \times 10^{-5}=$ benzoic acid (see given K_{a} at the beginning of the question)
$K_{a}=1.77 \times 10^{-4}=$ methanoic acid (calculated value from above)
Methanoic acid. For acids, the larger the K_{a}, the greater the strength (dissociation).

