AP CHEMISTRY

TOPIC 7: ACIDS & BASES,

CLEARY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS.

$$HC_7H_5O_2_{(aq)} \rightleftharpoons C_7H_5O_2^{-1}_{(aq)} + H^{+1}_{(aq)} \qquad K_a = 6.4 \times 10^{-5}$$

- 1. Benzoic acid, $HC_7H_5O_2$, ionizes in water according to the equation above.
 - (a) Write the equilibrium-constant expression for the reaction.

$$K_{a} = \frac{\left[C_{7}H_{5}O_{2}^{-1} \right] \left[H^{+1} \right]}{\left[HC_{7}H_{5}O_{2} \right]}$$

(b) Calculate the pH of 0.567 *M* solution of benzoic acid.

	[HC ₇ H ₅ O ₂]	\rightleftharpoons	$[C_7H_5O_2^{-1}]$	+	$[H^{+1}]$
Ι	0.567 M		0		0
С	- <i>x</i>		+x		+x
Ε	0.567 M - x		X		x

$$K_{a} = \frac{\left[\begin{array}{c}C_{7}H_{5}O_{2}^{-1}\right]\left[\begin{array}{c}H^{+1}\right]}{\left[\begin{array}{c}HC_{7}H_{5}O_{2}\end{array}\right]} = \frac{x^{2}}{0.567 - x} = \frac{x^{2}}{0.567} = 6.4 \times 10^{-5}$$
$$x^{2} = \left(\begin{array}{c}0.567\end{array}\right)\left(\begin{array}{c}6.4 \times 10^{-5}\end{array}\right), \quad x = \sqrt{3.63 \times 10^{-5}} = 6.02 \times 10^{-3}$$
$$\left[\begin{array}{c}H^{+1}\end{array}\right] = 6.02 \times 10^{-3} M$$
$$\mathbf{pH} = -\log\left(6.02 \times 10^{-3}\right) = \mathbf{2.22}$$

- (c) A 0.763 g sample of lithium benzonate, $LiC_7H_5O_2$, is added to a 75.0 mL sample of a 0.567 *M* solution of benzoic acid. Assuming that no change in the volume of the solution occurs, calculate each of the following.
 - (i) The concentration of the benzonate ion, $C_7H_5O_2^{-1}$ (aq), in the solution.

mol LiC₇H₅O₂ =
$$\frac{0.763 \ g \ LiC_7H_5O_2}{128.05 \ g} \times \frac{1 \ mol \ LiC_7H_5O_2}{128.05 \ g} = 5.96 \times 10^{-3} \ mol$$

$$LiC_7H_5O_2 \rightarrow Li^{+1} + C_7H_5O_2^{-1}$$

(Li^{+1} is a conjugate of a strong base, $C_7H_5O_2^{-1}$ is a conjugate of weak acid)

$$[C_7H_5O_2^{-1}] = \frac{5.96 \times 10^{-3} \ mol}{0.075 \ L} = 0.0794 \ M$$

(ii) The concentration of the $H^{+}_{(aq)}$ ion in the solution.

	$[C_7H_5O_2^{-1}]$	+	HOH	\Rightarrow	[HC ₇ H ₅ O ₂]	+	[OH ⁻¹]
Ι	0.0794 M		-		0.567 M		~ 0
С	- <i>x</i>		-		+ <i>x</i>		+x
Ε	0.0794 - x		-		0.567 - x		[OH ⁻¹]

$$K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{6.40 \times 10^{-5}} = 1.56 \times 10^{-10}$$

$$K_{b} = \frac{\left[HC_{7}H_{5}O_{2} \right] \left[OH^{-1} \right]}{\left[C_{7}H_{5}O_{2}^{-1} \right]} = \frac{\left(0.567 + x \right) \left[OH^{-1} \right]}{\left(0.0794 - x \right)} = \frac{\left(0.567 \right) \left[OH^{-1} \right]}{\left(0.0794 \right)} = 1.56 \times 10^{-10}$$

$$\begin{bmatrix} OH^{-1} \end{bmatrix} = \frac{(1.56 \times 10^{-10})(0.0794)}{(0.567)} = 2.19 \times 10^{-1}$$

$$\begin{bmatrix} H^{+1} \end{bmatrix} = \frac{K_w}{\begin{bmatrix} OH^{-1} \end{bmatrix}} = \frac{1.00 \times 10^{-14}}{2.19 \times 10^{-11}} = 4.57 \times 10^{-4}$$

The methanoate ion, $HCO_2^{-1}_{(aq)}$, reacts with water to form methanoic acid and hydroxide, as shown in the following equation.

$$HCO_2^{-1}_{(aq)} + H_2O_{(l)} \rightleftharpoons H_2CO_2_{(aq)} + OH^{-1}_{(aq)}$$

(d) Given that $[OH^{-}]$ is 4.18 x 10⁻⁶ *M* in a 0.309 *M* solution of sodium methanoate, calculate each of the following.

(i) The value of K_b for the methanoate ion, HCO₂⁻¹ (aq).

$$NaHCO_2 \rightarrow Na^{+1} + HCO_2^{-1}$$

(Na⁺¹ is a conjugate of a strong base, HCO_2^{-1} is a conjugate of weak acid)

	[HCO ₂ ⁻¹]	+	HOH	\rightleftharpoons	[H ₂ CO ₂]	+	[OH ⁻¹]
Ι	0.309 M		-		0		0
С	- <i>x</i>		-		$+x = 4.18 \times 10^{-6}$		$+x = 4.18 \text{ x } 10^{-6}$
Ε	0.309 - 4.18 x 10 ⁻⁶		-		4.18 x 10 ⁻⁶		4.18 x 10 ⁻⁶

$$K_{b} = \frac{\left[\begin{array}{c}H_{2}CO_{2}\end{array}\right]\left[\begin{array}{c}OH^{-1}\end{array}\right]}{\left[\begin{array}{c}HCO_{2}^{-1}\end{array}\right]} = \frac{\left(\begin{array}{c}4.18\times10^{-6}\end{array}\right)^{2}}{\left(0.309 - 4.18\times10^{-6}\right)} = 5.65\times10^{-11}$$

(ii) The value of K_a for methanoic acid, H₂CO_{2 (aq)}

$$K_a = \frac{K_w}{K_b} = \frac{1.00 \times 10^{-14}}{5.65 \times 10^{-11}} = 1.77 \times 10^{-4}$$

(e) Which acid is stronger, benzoic acid or methanoic acid? Justify your answer.

 $K_a = 6.40 \times 10^{-5} =$ benzoic acid (see given K_a at the beginning of the question)

 $K_a = 1.77 \text{ x } 10^{-4} = \text{methanoic acid}$ (calculated value from above)

Methanoic acid. For acids, the larger the K_a , the greater the strength (dissociation).