TOPIC 7: Acids \& Bases, Part E, ExAMPles, Part II Day 82:

- Common-Ion Effect - Percent Dissociation (weak acids \& bases)

Example:

$$
\mathrm{HC}_{3} \mathrm{H}_{4} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}^{-1}(\mathrm{aq})
$$

Acrylic acid, $\mathrm{HC}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$, is a monoprotic acid that dissociates in an aqueous solution, as represented in the equation above. Acrylic acid is 0.6433 percent dissociated in $1.35 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$ (aq) at 298 K . For parts (a) through (c) below, assume the temperature remains at 298 K .
(a) Write the expression for the acid-dissociation constant, $K_{a .}$, for lactic acid and calculate its value.

$$
K_{a}=\frac{\left[H^{+1}\right]\left[\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}^{-1}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right]}
$$

$(1.35 M)(0.006433)=0.008684 M=x$

	$\left[\mathrm{HC}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right]$	\rightleftharpoons	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}{ }^{-1}\right]$
\mathbf{I}	$1.35 M$		0		0
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$1.35 M-0.008684 M$		$0.008684 M$		$0.008684 M$

$$
K_{a}=\frac{x^{2}}{1.35-x}=\frac{(0.008684)^{2}}{1.341316}=5.62 \times 10^{-5}
$$

(b) Calculate the pH of $1.35 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$

$$
\mathbf{p H}=-\log \left[\mathrm{H}^{+1}\right]=-\log (0.008684)=2.06
$$

(c) Calculate the pH of a solution formed by dissolving 1.35 mol of solid potassium, $\mathrm{KC}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$. in 2550 mL of $1.35 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$. Assume the volume change is negligible.

$$
\mathrm{KC}_{3} \mathrm{H}_{4} \mathrm{O}_{2} \rightarrow \mathrm{~K}^{+1}+\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}^{-1}
$$

(this is a SALT - that produces a "common ion")

$$
M=\frac{1.35 \mathrm{~mol} \mathrm{KC}}{3} \mathrm{H}_{4} \mathrm{O}_{2}=0.529 \mathrm{M}
$$

	$\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-1}\right]$	+	HOH	\rightleftharpoons	$\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	$0.529 M$		-		$1.35 M$		~ 0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$0.529-x$		-		$1.35+x$		$\left[\mathrm{OH}^{-1}\right]$

$$
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{5.62 \times 10^{-5}}=1.78 \times 10^{-10}
$$

$$
\begin{gathered}
K_{b}=\frac{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]\left[\mathrm{OH}^{-1}\right]}{\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-1}\right]}=\frac{(1.35+x)\left[\mathrm{OH}^{-1}\right]}{(0.529-x)}=\frac{(1.35)\left[O H^{-1}\right]}{(0.529)}=1.78 \times 10^{-10} \\
{\left[O H^{-1}\right]=\frac{\left(1.78 \times 10^{-10}\right)(0.529)}{(1.35)}=6.97 \times 10^{-11}} \\
\mathbf{p O H}=-\log \left[\mathrm{OH}^{-1}\right]=-\log \left(6.97 \times 10^{-11}\right)=\mathbf{1 0 . 1 6} \\
\mathbf{p H}=14-10.16=\mathbf{3 . 8 4}
\end{gathered}
$$

OR

$$
\mathbf{p H}=\left(14-\left(-\log \left[\mathrm{OH}^{-1}\right]\right)=14-\left(-\log \left(6.97 \times 10^{-11}\right)\right)=3.84\right.
$$

2. Calculate the pH of a 1.00 liter 2.22 M nitrous acid, HNO_{2}, solution (at equilibrium). THEN calculate the pH of the solution when 15.3 grams of solid lithium nitrite, LiNO_{2}, is added to the solution at equilibrium. Assume that the volume change is negligible. The K_{a} value for HNO_{2} is 4.0×10^{-4}.

$$
\mathrm{HNO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+1}+\mathrm{NO}_{2}^{-1}(\mathrm{aq})
$$

	$\left[\mathrm{HNO}_{2}\right]$	+	$\left[\mathrm{H}_{2} \mathrm{O}\right]$	\rightleftharpoons	$\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]$	+	$\left[\mathrm{NO}_{2}^{-1}\right]$
\mathbf{I}	$2.22 M$		-		0		0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$2.22-x$		-		x		x

$$
\begin{gathered}
K_{a}=4.0 \times 10^{-4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]\left[\mathrm{NO}_{2}^{-1}\right]}{\left[\mathrm{HNO}_{2}\right]}=\frac{x^{2}}{2.22-x}=\frac{x^{2}}{2.22} \\
x^{2}=(2.22)\left(4.0 \times 10^{-4}\right)=8.88 \times 10^{-4} \\
x=\sqrt{8.88 \times 10^{-4}}=0.0298
\end{gathered}
$$

$$
\left[\mathrm{H}^{+1}\right]=0.0298 \mathrm{M}
$$

$$
\mathbf{p H}=-\log (0.0298)=\mathbf{1 . 5 3}
$$

At equilibrium, 15.3 grams of solid lithium nitrite, LiNO_{2}, is added to the equilibrium system. Lithium nitrite dissociates to 100%. The lithium does nothing to affect the solution (in regards to altering the pH because it is a conjugate of a STRONG BASE) Lithium ion is a spectator ion in the solution.

$$
\mathrm{LiNO}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{Li}^{+1}{ }_{(\mathrm{aq})}+\mathrm{NO}_{2}^{-1}{ }_{(\mathrm{aq})}
$$

(this is a SALT - that produces a "common ion")
Calculate the concentration of the nitrite ion once it has dissociated in the nitrous acid solution at equilibrium.

$$
\begin{gathered}
\frac{15.3 \mathrm{~g} \mathrm{LiNO}}{2} \\
M=\frac{1 \mathrm{~mol} \mathrm{LiNO}}{2} \\
52.95 \mathrm{~g}
\end{gathered} \frac{\mathrm{~mol}}{L}=\frac{0.289 \mathrm{~mol}}{1.00 \mathrm{~L}}=0.289 \mathrm{M} \mathrm{LiNO}_{2} .
$$

	$\left[\mathrm{NO}_{2}{ }^{-1}\right]$	+	HOH	\rightleftharpoons	$\left[\mathrm{HNO}_{2}\right]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	$0.289 M$		-		$2.22 M$		~ 0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$0.289-x$		-		$2.22+x$		$\left[\mathrm{OH}^{-1}\right]$

$$
\begin{gathered}
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{4.00 \times 10^{-4}}=2.50 \times 10^{-11} \\
K_{b}=\frac{\left[H N O_{2}\right]\left[O H^{-1}\right]}{\left[\mathrm{NO}_{2}^{-1}\right]}=\frac{(2.22+x)\left[O H^{-1}\right]}{(0.289-x)}=\frac{(2.22)\left[O H^{-1}\right]}{(0.289)}=2.50 \times 10^{-11} \\
{\left[O H^{-1}\right]=\frac{\left(2.50 \times 10^{-11}\right)(0.289)}{(2.22)}=3.25 \times 10^{-12}} \\
\mathbf{p O H}=-\log \left(3.25 \times 10^{-12}\right)=\mathbf{1 1 . 4 9} \\
\mathbf{p H}=14-\operatorname{pOH}=14-\mathbf{1 1 . 4 9}=\mathbf{2 . 5 1} \\
\mathbf{O R} \\
\mathbf{p H}=\left(14-\left(-\log \left[\mathrm{OH}^{-1}\right]\right)=14-\left(-\log \left(3.25 \times 10^{-12}\right)\right)=\mathbf{2 . 5 1}\right.
\end{gathered}
$$

