AP CHEMISTRY

TOPIC 7: ACIDS & BASES, REVIEW, PART II

CLEARY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS.

$$HC_3H_5O_2(aq) \rightleftharpoons H^+(aq) + C_3H_5O_2^{-1}(aq)$$

- 1. Propanoic acid, $HC_3H_5O_{2 (aq)}$, is a monoprotic acid that dissociates in an aqueous solution, as represented by the equation above. Propanoic acid is 2.03 percent dissociated in 0.85 *M* $HC_3H_5O_{2 (aq)}$ at 298 K. For parts (a) through (d) below, assume the temperature remains at 298 K.
 - (a) Write the expression for the acid-dissociation constant, K_a , for propanoic acid and calculate its value.

$$K_{a} = \frac{\left[H^{+1} \right] \left[C_{3}H_{5}O_{2}^{-1} \right]}{\left[HC_{3}H_{5}O_{2} \right]}$$

Propanoic acid is a weak acid, Strong acids (and strong bases) always dissociate to 100%. Since the question gives the percent dissociation for this weak acid, we can determine the concentration for the products (x) AT EQUILIBRIUM.

$$0.85 M \ge 0.0203 = 0.017255 M$$

	[HC ₃ H ₅ O ₂]	\Rightarrow	$[H^{+1}]$	+	$[C_{3}H_{5}O_{2}^{-1}]$
Ι	0.85 M		0		0
С	- <i>x</i>		+x = 0.017255 M		+ <i>x</i>
Ε	0.85 - 0.017255		0.017255		0.017255

$$K_{a} = \frac{\left[H^{+1} \right] \left[C_{3}H_{5}O_{2}^{-1} \right]}{\left[HC_{3}H_{5}O_{2} \right]} = \frac{\left(0.017255 \right)^{2}}{\left(0.85 - 0.017255 \right)} = 3.58 \times 10^{-4}$$

Since we KNOW "x", do not drop the "x" in the equation to solve for K_a .

(b) Calculate the pH of 0.85 M HC₃H₅O_{2 (aq)}.

 $[H^{+1}] = 0.017255 M$ **pH** = - log (0.017255) = **1.76** (c) Calculate the pH of a solution formed by dissolving 0.0864 mole of solid potassium propanate, $KC_3H_5O_2$, in 250 mL of 0.85 *M* HC₃H₅O_{2 (aq)}. Assume that volume change is negligible.

$$\mathrm{KC_3H_5O_2} \rightarrow \mathrm{K^{+1}} + \mathrm{C_3H_5O_2^{-1}}$$

$$\frac{0.0864 \ mol \ C_3 H_5 O_2^{-1}}{0.250 \ L} = 0.3456 \ M$$

	$[C_{3}H_{5}O_{2}^{-1}]$	+	HOH	\Rightarrow	[HC ₃ H ₅ O ₂]	+	[OH ⁻¹]
Ι	0.3456 M		-		0.85 M		~ 0
С	- <i>x</i>		-		+x		+x
Ε	0.3456 - x		-		0.85 + x		[OH ⁻¹]

$$K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{3.58 \times 10^{-4}} = 2.79 \times 10^{-11}$$

$$K_{b} = \frac{\left[\begin{array}{c}HC_{3}H_{5}O_{2}\end{array}\right]\left[\begin{array}{c}OH^{-1}\end{array}\right]}{\left[\begin{array}{c}C_{3}H_{5}O_{2}^{-1}\end{array}\right]} = \frac{\left(0.85 + x\right)\left[\begin{array}{c}OH^{-1}\end{array}\right]}{\left(\begin{array}{c}0.3456 - x\end{array}\right)} = \frac{\left(0.85\right)\left[\begin{array}{c}OH^{-1}\end{array}\right]}{\left(\begin{array}{c}0.3456\end{array}\right)} = 2.79 \times 10^{-11}$$

$$\left[OH^{-1} \right] = \frac{\left(2.79 \times 10^{-1} \right) \left(0.3436^{-1} \right)}{\left(0.85^{-1} \right)} = 1.14 \times 10^{-1}$$

$$pOH = -\log(1.14 \times 10^{-11}) = 10.94$$

 $pH = 14 - pOH = 14 - 10.94 = 3.06$

2. Calculate the pOH for a 1.44 *M* solution of a hydroxylamine, HONH₂, solution. $K_b = 1.1 \times 10^{-8}$.

Answers: WEAK BASE (you are given a K_b value - NOT a conjugate base - hydrogen is added to the end ! Remember, add H^{+1} to the "BACK" of Bases

	[HONH ₂]	+	[H ₂ O]	\rightleftharpoons	[HONH ₃ ⁺¹]	+	[OH ⁻¹]
Ι	1.44 M		-		0		0
С	- <i>x</i>		-		+x		+x
Ε	1.44 - x		-		X		x

$$K_{b} = 1.1 \times 10^{-8} = \frac{\left[HONH_{3}^{+1}\right] \left[OH^{-1}\right]}{\left[HONH_{2}\right]} = \frac{(x)(x)}{1.44 - x} = \frac{x^{2}}{1.44}$$
$$K_{b} = 1.1 \times 10^{-8} = \frac{x^{2}}{1.44}$$
$$\left(1.1 \times 10^{-8}\right) \left(1.44\right) = x^{2}$$
$$x = \sqrt{1.58 \times 10^{-8}} = 1.26 \times 10^{-4} M = \left[OH^{-1}\right]$$
$$\mathbf{pOH} = -\log(1.26 \times 10^{-4}) = \mathbf{3.90}$$

3. Calculate the pH of a 0.95 *M* LiF solution. K_a value for HF is 7.2 x 10⁻⁴.

$$LiF \rightarrow Li^{+1} + F^{-1}$$

 $(Li^{+1}, conjugate acid of a strong base, F^{-1}, conjugate base of a weak acid)$ The sodium ion, Li^{+1} , has no effect on the solution to make it basic or acidic.

$$K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{7.2 \times 10^{-4}} = 1.39 \times 10^{-11}$$

Pure water (pH or pure water equals 7.00) and then the salt is added !

	[F ⁻¹]	+	[H ₂ O]	\rightleftharpoons	[HF]	+	[OH ⁻¹]
Ι	0.95 M		-		0		0
С	- <i>x</i>		-		+x		+x
Ε	0.95 M - x		-		x		x

$$K_{b} = 1.39 \times 10^{-11} = \frac{\left[HF \right] \left[OH^{-1} \right]}{\left[F^{-1} \right]} = \frac{x^{2}}{0.95 - x} = \frac{x^{2}}{0.95}$$
$$x^{2} = (0.95)(1.39 \times 10^{-11}) = 1.32 \times 10^{-11}$$
$$x = \sqrt{1.32 \times 10^{-11}} = 3.63 \times 10^{-6}$$
$$[OH^{-1}] = 3.63 \times 10^{-6} M = x$$
$$pOH = -\log(3.63 \times 10^{-6}) = 5.44$$
$$pH = 14 - 5.44 = 8.56$$