CLEARY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS.

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}
$$

1. Propanoic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2 \text { (aq), }}$, is a monoprotic acid that dissociates in an aqueous solution, as represented by the equation above. Propanoic acid is 2.03 percent dissociated in $0.85 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2 \text { (aq) }}$ at 298 K . For parts (a) through (d) below, assume the temperature remains at 298 K .
(a) Write the expression for the acid-dissociation constant, K_{a}, for propanoic acid and calculate its value.

$$
K_{a}=\frac{\left[H^{+1}\right]\left[C_{3} H_{5} O_{2}^{-1}\right]}{\left[H C_{3} H_{5} O_{2}\right]}
$$

Propanoic acid is a weak acid, Strong acids (and strong bases) always dissociate to 100\%. Since the question gives the percent dissociation for this weak acid, we can determine the concentration for the products (x) AT EQUILIBRIUM.

$$
0.85 M \times 0.0203=0.017255 M
$$

	$\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]$	\rightleftharpoons	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-1}\right]$
\mathbf{I}	0.85 M		0		0
\mathbf{C}	$-x$		$+x=0.017255 M$		$+x$
\mathbf{E}	$0.85-0.017255$		0.017255		0.017255

$$
K_{a}=\frac{\left[H^{+1}\right]\left[C_{3} H_{5} O_{2}^{-1}\right]}{\left[H C_{3} H_{5} O_{2}\right]}=\frac{(0.017255)^{2}}{(0.85-0.017255)}=3.58 \times 10^{-4}
$$

Since we KNOW " x ", do not drop the " x " in the equation to solve for K_{a}.
(b) Calculate the pH of $0.85 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2 \text { (aq) }}$.

$$
\begin{gathered}
{\left[\mathrm{H}^{+1}\right]=0.017255 \mathbf{M}} \\
\mathbf{p H}=-\log (0.017255)=\mathbf{1 . 7 6}
\end{gathered}
$$

(c) Calculate the pH of a solution formed by dissolving 0.0864 mole of solid potassium propanate, $\mathrm{KC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$, in 250 mL of $0.85 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2 \text { (aq) }}$. Assume that volume change is negligible.

$$
\mathrm{KC}_{3} \mathbf{H}_{5} \mathrm{O}_{2} \rightarrow \mathrm{~K}^{+1}+\mathrm{C}_{3} \mathbf{H}_{5} \mathrm{O}_{2}^{-1}
$$

$$
\frac{0.0864 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}}{0.250 \mathrm{~L}}=0.3456 \mathrm{M}
$$

	$\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}\right]$	+	HOH	\rightleftharpoons	$\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	$0.3456 M$		-		$0.85 M$		~ 0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$0.3456-x$		-		$0.85+x$		$\left[\mathrm{OH}^{-1}\right]$

$$
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{3.58 \times 10^{-4}}=2.79 \times 10^{-11}
$$

$$
K_{b}=\frac{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]\left[O H^{-1}\right]}{\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}\right]}=\frac{(0.85+x)\left[O H^{-1}\right]}{(0.3456-x)}=\frac{(0.85)\left[O H^{-1}\right]}{(0.3456)}=2.79 \times 10^{-11}
$$

$$
\begin{gathered}
{\left[O H^{-1}\right]=\frac{\left(2.79 \times 10^{-11}\right)(0.3456)}{(0.85)}=1.14 \times 10^{-11}} \\
\mathrm{pOH}=-\log \left(1.14 \times 10^{-11}\right)=10.94 \\
\mathbf{p H}=14-\mathrm{pOH}=14-10.94=\mathbf{3 . 0 6}
\end{gathered}
$$

2. Calculate the pOH for a 1.44 M solution of a hydroxylamine, HONH_{2}, solution. $K_{b}=1.1 \times 10^{-8}$.

Answers: WEAK BASE (you are given a K_{b} value - NOT a conjugate base - hydrogen is added to the end !
Remember, add H^{+1} to the "BACK" of Bases

	$\left[\mathrm{HONH}_{2}\right]$	+	$\left[\mathrm{H}_{2} \mathrm{O}\right]$	\rightleftharpoons	$\left[\mathrm{HONH}_{3}{ }^{+1}\right]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	$1.44 M$		-		0		0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$1.44-x$		-		x		x

$$
\begin{gathered}
K_{b}=1.1 \times 10^{-8}=\frac{\left[\mathrm{HONH}_{3}^{+1}\right]\left[\mathrm{OH}^{-1}\right]}{\left[\mathrm{HONH}_{2}\right]}=\frac{(x)(x)}{1.44-x}=\frac{x^{2}}{1.44} \\
K_{b}=1.1 \times 10^{-8}=\frac{x^{2}}{1.44} \\
\left(1.1 \times 10^{-8}\right)(1.44)=x^{2} \\
x=\sqrt{1.58 \times 10^{-8}}=1.26 \times 10^{-4} M=\left[O H^{-1}\right] \\
\mathbf{p O H}=-\log \left(1.26 \times 10^{-4}\right)=\mathbf{3 . 9 0}
\end{gathered}
$$

3. Calculate the pH of a 0.95 MLiF solution. K_{a} value for HF is 7.2×10^{-4}.

$$
L i F \rightarrow L i^{+l}+F^{-1}
$$

(Li^{+1}, conjugate acid of a strong base, F^{-1}, conjugate base of a weak acid) The sodium ion, L^{+1}, has no effect on the solution to make it basic or acidic.

$$
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{7.2 \times 10^{-4}}=1.39 \times 10^{-11}
$$

Pure water (pH or pure water equals 7.00) and then the salt is added!

	$\left[\mathrm{F}^{-1}\right]$	+	$\left[\mathrm{H}_{2} \mathrm{O}\right]$	\rightleftharpoons	$[\mathrm{HF}]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	$0.95 M$		-		0		0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$0.95 M-x$		-		x		x

$$
\begin{gathered}
K_{b}=1.39 \times 10^{-11}=\frac{[H F]\left[O H^{-1}\right]}{\left[F^{-1}\right]}=\frac{x^{2}}{0.95-x}=\frac{x^{2}}{0.95} \\
x^{2}=(0.95)\left(1.39 \times 10^{-11}\right)=1.32 \times 10^{-11} \\
x=\sqrt{1.32 \times 10^{-11}}=3.63 \times 10^{-6} \\
{\left[\mathrm{OH}^{-1}\right]=3.63 \times 10^{-6} M=x} \\
\mathrm{pOH}=-\log \left(3.63 \times 10^{-6}\right)=5.44 \\
\mathbf{p H}=14-5.44=\mathbf{8 . 5 6}
\end{gathered}
$$

