AP CHEMISTRY

TOPIC 7: ACIDS & BASES, MORE EXAMPLES

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS.

$$HC_{6}H_{11}O_{2(aq)} \rightleftharpoons H^{+}_{(aq)} + C_{6}H_{11}O_{2}^{-1}_{(aq)}$$

- Hexanoic acid, HC₆H₁₁O_{2 (aq)}, is a monoprotic acid that dissociates in an aqueous solution, as represented by the equation above. The equilibrium concentration for the hexanate ions, C₆H₁₁O_{2⁻¹ (aq)}, is equal to 0.00332 *M*. Hexanoic acid's initial concentration is 0.750 *M* HC₆H₁₁O_{2 (aq)} at 298 K. For parts (a) through (d) below, assume the temperature remains at 298 K.
 - (a) Write the expression for the acid-dissociation constant, K_a , for hexanoic acid and calculate its value.

$$K_{a} = \frac{\left[\begin{array}{c}H^{+1}\right] \left[\begin{array}{c}C_{6}H_{11}O_{2}^{-1}\right]}{\left[\begin{array}{c}HC_{6}H_{11}O_{2}\end{array}\right]} = \frac{\left(0.00332\right)^{2}}{\left(0.75 - 0.00332\right)} = 1.48 \times 10^{-5}$$

(b) Calculate the pH of the above solution at equilibrium.

$$[H^{+1}] = 0.00332, pH = -log(0.0032) = 2.48$$

(c) Calculate the pH of a solution formed by dissolving 21.7 grams of solid cesium hexanate, $CsC_6H_{11}O_2$, in 250 mL of 0.75 *M* HC₆H₁₁O_{2 (aq)}. Assume that volume change is negligible. (This time we will write the ICE chart in a way that expresses the addition of the solid, and cause the reaction to shift to the left)

 $CsC_6H_{11}O_2 \rightarrow Cs^{+1} + C_6H_{11}O_2^{-1}$ (strong electrolyte = 100 % dissociation)

 $\frac{21.7 \ g}{247.9969 \ g} \times \frac{1 \ mol \ CsC_6H_{11}O_2}{247.9969 \ g} = 0.0875 \ mol \ ; \ \frac{0.0875 \ mol}{0.250 \ L} = 0.35 \ M \ = \ \left[Cs^{+1}\right] \ = \ \left[C_6H_{11}O_2^{-1}\right]$

	$[C_6H_{11}O_2^{-1}]$	+	HOH	\Rightarrow	[HC ₆ H ₁₁ O ₂]	+	[OH ⁻¹]
Ι	0.35 M		-		0.75		~ 0
С	- <i>x</i>		-		+x		+x
Ε	0.35 - x		-		0.75 + x		[OH ⁻¹]

$$K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{1.48 \times 10^{-5}} = 6.76 \times 10^{-10}$$

$$K_{b} = \frac{\left[\begin{array}{c}HC_{6}H_{11}O_{2}\end{array}\right]\left[\begin{array}{c}OH^{-1}\end{array}\right]}{\left[\begin{array}{c}C_{6}H_{11}O_{2}^{-1}\end{array}\right]} = \frac{\left(0.750 + x\right)\left[\begin{array}{c}OH^{-1}\end{array}\right]}{\left(0.35 - x\right)} = \frac{\left(0.750\right)\left[\begin{array}{c}OH^{-1}\end{array}\right]}{\left(0.35\right)} = 1.48 \times 10^{-5}$$
$$\left[\begin{array}{c}OH^{-1}\end{array}\right] = \frac{\left(6.76 \times 10^{-10}\right)\left(0.35\right)}{\left(0.750\right)} = 3.15 \times 10^{-10}$$

pH = 14 - pOH, $pH = 14(-log(3.15 \times 10^{-10})) = 4.50$