CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS.

$$
\mathrm{HC}_{6} \mathrm{H}_{11} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}^{-1}(\mathrm{aq})
$$

1. Hexanoic acid, $\mathrm{HC}_{6} \mathrm{H}_{11} \mathrm{O}_{2(\mathrm{aq})}$, is a monoprotic acid that dissociates in an aqueous solution, as represented by the equation above. The equilibrium concentration for the hexanate ions, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{-1}{ }_{(\text {aq) }}$, is equal to 0.00332 M . Hexanoic acid's initial concentration is $0.750 \mathrm{M} \mathrm{HC}_{6} \mathrm{H}_{11} \mathrm{O}_{2 \text { (aq) }}$ at 298 K . For parts (a) through (d) below, assume the temperature remains at 298 K .
(a) Write the expression for the acid-dissociation constant, K_{a}, for hexanoic acid and calculate its value.

$$
K_{a}=\frac{\left[H^{+1}\right]\left[C_{6} H_{11} O_{2}^{-1}\right]}{\left[H C_{6} H_{11} O_{2}\right]}=\frac{(0.00332)^{2}}{(0.75-0.00332)}=1.48 \times 10^{-5}
$$

(b) Calculate the pH of the above solution at equilibrium.

$$
\left[\mathrm{H}^{+1}\right]=0.00332, \quad \boldsymbol{p H}=-\log (0.0032)=2.48
$$

(c) Calculate the pH of a solution formed by dissolving 21.7 grams of solid cesium hexanate, $\mathrm{CsC}_{6} \mathrm{H}_{11} \mathrm{O}_{2}$, in 250 mL of $0.75 \mathrm{M} \mathrm{HC}_{6} \mathrm{H}_{11} \mathrm{O}_{2 \text { (aq) }}$. Assume that volume change is negligible. (This time we will write the ICE chart in a way that expresses the addition of the solid, and cause the reaction to shift to the left)

$$
\mathrm{CsC}_{6} \mathrm{H}_{11} \mathrm{O}_{2} \rightarrow \mathrm{Cs}^{+1}+\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}^{-1}(\text { strong electrolyte }=100 \% \text { dissociation })
$$

$$
\frac{21.7 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{CsC}_{6} \mathrm{H}_{11} \mathrm{O}_{2}}{247.9969 \mathrm{~g}}=0.0875 \mathrm{~mol} \quad ; \frac{0.0875 \mathrm{~mol}}{0.250 \mathrm{~L}}=0.35 \mathrm{M}=\left[\mathrm{Cs}^{+1}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}^{-1}\right]
$$

	$\left[\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}^{-1}\right]$	+	HOH	\rightleftharpoons	$\left[\mathrm{HC}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	$0.35 M$		-		0.75		~ 0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$0.35-x$		-		$0.75+x$		$\left[\mathrm{OH}^{-1}\right]$

$$
\begin{gathered}
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{1.48 \times 10^{-5}}=6.76 \times 10^{-10} \\
K_{b}=\frac{\left[H C_{6} H_{11} O_{2}\right]\left[O H^{-1}\right]}{\left[C_{6} H_{11} O_{2}^{-1}\right]}=\frac{(0.750+x)\left[O H^{-1}\right]}{(0.35-x)}=\frac{(0.750)\left[O H^{-1}\right]}{(0.35)}=1.48 \times 10^{-5} \\
{\left[O H^{-1}\right]=\frac{\left(6.76 \times 10^{-10}\right)(0.35)}{(0.750)}=3.15 \times 10^{-10}} \\
\mathbf{p H}=\mathbf{1 4 - p O H}, \quad \boldsymbol{p H}=\mathbf{1 4}\left(-\log \left(3.15 \times \mathbf{1 0}^{-10}\right)\right)=\mathbf{4 . 5 0}
\end{gathered}
$$

