AP CHEMISTRY

Topic 7: Acids \& BAses, Review Part IV - DO THIS !!!

1. List ALL the STRONG ACIDS and STRONG BASES - Use ONLY your periodic table to answer this question!

Acids:
HCI
HBr
HI
HNO_{3}
HClO_{4}
$\mathrm{H}_{2} \mathrm{SO}_{4}$ (Only the first dissociation is strong!)

Bases:

LiOH
NaOH
KOH
RbOH
CsOH
FrOH
$\mathrm{Ca}(\mathrm{OH})_{2}$ (Both OH^{-1} will dissociate)
$\mathrm{Sr}(\mathrm{OH})_{2}$ (Both OH^{-1} will dissociate)
$\mathrm{Ba}(\mathrm{OH})_{2}$ (Both OH^{-1} will dissociate)
2. What is the:

Conjugate Acid for:	Base for:	Conjugate Base for:	Acid for:
$\mathrm{HB}_{4} \mathrm{O}_{7}{ }^{-1} \boldsymbol{:} \quad \mathrm{H}_{2} \mathbf{B}_{4} \mathrm{O}_{7}$	$\mathrm{HPO}_{4}{ }^{-2}: \quad \mathrm{PO}_{4}{ }^{-3}$	$\mathrm{HB}_{4} \mathrm{O}_{7}^{-1}: \quad \boldsymbol{B}_{4} \mathrm{O}_{7}{ }^{-2}$	$\mathrm{HPO}_{4}{ }^{-2}$: $\mathbf{H}_{2} \mathbf{P O}_{4}{ }^{-1}$
$\mathrm{HCrO}_{4}{ }^{-1}$: $\mathbf{H}_{\mathbf{2}} \mathbf{C r O}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}: \mathbf{H P O}_{4}{ }^{\mathbf{- 2}}$	$\mathrm{HCrO}_{4}^{-1}: \mathrm{CrO}_{4}{ }^{-2}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}: \mathbf{H}_{3} \mathrm{PO}_{4}$
$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-1}: \mathbf{H}_{\mathbf{2}} \mathrm{C}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}$	$\mathrm{HSCN}^{-1}: \mathbf{S C N}^{-2}$	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-1}: \mathbf{C}_{2} \mathbf{O}_{4}{ }^{-2}$	$\mathrm{HSCN}^{-1}: \mathbf{H}_{2} \mathbf{S C N}$
$\mathrm{HCr}_{2} \mathrm{O}_{7}^{-1}: \mathbf{H}_{\mathbf{2}} \mathrm{Cr}_{2} \mathbf{O}_{7}$	$\mathrm{H}_{2} \mathrm{SiO}_{4}{ }^{-2}: \mathbf{H S i O}_{4}{ }^{\mathbf{- 3}}$	$\mathrm{HCr}_{2} \mathrm{O}_{7}{ }^{-1}: \mathbf{C r}_{2} \mathbf{O}_{7}{ }^{-2}$	$\mathrm{H}_{2} \mathrm{SiO}_{4}{ }^{-1}: \mathbf{H}_{3} \mathrm{SiO}_{4}$
$\mathrm{HWO}_{4}{ }^{-1}: \mathbf{H}_{\mathbf{2}} \mathbf{W O}_{\mathbf{4}}$	$\mathrm{HSO}_{3}{ }^{-1}: \mathbf{S O}_{3}{ }^{-\mathbf{2}}$	$\mathrm{HWO}_{4}{ }^{-1}$: $\mathbf{W O}_{4}{ }^{-2}$	$\mathrm{HSO}_{3}{ }^{-1}: \mathbf{H}_{2} \mathbf{S O}_{3}$

3. Write the dissociation reaction for each of the following salts when placed in water and determine if the solution will become acidic, basic or remain neutral - THEN identify "the thing" that causes the solution to become this way.

Salt:	Reaction that causes the solution to become...	Acidic, Basic or Remain Neutral
$\mathrm{NaC}_{3} \mathrm{H}_{7} \mathrm{O}_{2}$	$\mathrm{NaC}_{3} \mathrm{H}_{7} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+1}+\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2}^{-1} ; \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}^{-1}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HC}_{3} \mathrm{H}_{7} \mathrm{O}_{2}+\mathrm{OH}^{1}$	Basic
	Conjugates of Strong Bases (cation) do nothing to change the pH of a solution, conjugates of weak acids (anion) behave as a base.	
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{HI}$	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{HI} \rightarrow \mathbf{C}_{4} \mathbf{H}_{4} \mathbf{O}_{\mathbf{2}} \mathbf{H}^{+\mathbf{1}}+I^{I} ; \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{H}^{+1} \leftrightarrow \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{H}^{+1}$	Acidic
	Conjugates of Strong Acids (anion) do nothing to change the pH of a solution, conjugates of weak bases (cation) behave as an acid.	
$\mathrm{Cs}_{2} \mathrm{SO}_{4}$	$\mathrm{Cs}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Cs}^{+1}+\mathrm{SO}_{4}{ }^{-2} ; \mathrm{SO}_{4}{ }^{-2}+\mathrm{HOH} \leftrightarrow \mathrm{HSO}_{4}^{-1}+\mathrm{OH}^{-1}$	Basic
	Conjugates of Strong Bases (cation) do nothing to change the pH of a solution, conjugates of weak acids (anion) behave as a base.	
$\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{HNO}_{3}$	$\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{HNO}_{3} \rightarrow \mathbf{C H}_{3} \mathbf{N}_{\mathbf{2}} \mathbf{H}^{+\mathbf{1}}+\mathrm{NO}_{3}^{-1} ; \mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{H}^{+1} \leftrightarrow \mathrm{CH}_{3} \mathrm{~N}_{2}+\mathrm{H}^{+1}$	Acidic
	Conjugates of Strong Acids (anion) do nothing to change the pH of a solution, conjugates of weak bases (cation) behave as an acid.	
RbF	$\mathrm{RbF} \rightarrow \boldsymbol{R b}^{+1}+\mathbf{F}^{-\mathbf{1}} \quad ; \quad \mathrm{F}^{-1}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HF}+\mathrm{OH}^{-1}$	Basic
	Conjugates of Strong Bases (cation) do nothing to change the pH of a solution, conjugates of weak acids (anion) behave as a base..	
$\mathrm{HNNH}_{2} \mathrm{Br}$	$\mathrm{HNNH}_{2} \mathrm{Br} \rightarrow \mathbf{H N N H}_{2}{ }^{+\boldsymbol{1}}+\mathrm{Br}^{-1} ; \mathrm{HNNH}_{2}{ }^{+1} \leftrightarrow \mathrm{HNNH}+\mathrm{H}^{+1}$	Acidic
	Conjugates of Strong Acids (anion) do nothing to change the pH of a solution, conjugates of weak bases (cation) behave as an acid.	
$\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$	$\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \rightarrow \boldsymbol{B a}^{+2}+2 \mathbf{C}_{2} \mathbf{H}_{3} \mathrm{O}_{\mathbf{2}}^{-1} ; \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}$	Basic
	Conjugates of Strong Bases (cation) do nothing to change the pH of a solution, conjugates of weak acids (anion) behave as a base.	
$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{HCl}$	$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{HCl} \rightarrow \mathrm{C}_{5} \mathbf{H}_{3} \mathbf{N}_{3} \mathbf{H}^{+1}+\mathrm{Cl}^{-1} ; \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{H}^{+1} \leftrightarrow \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{3}+\mathrm{H}^{+1}$	Acidic
	Conjugates of Strong Acids (anion) do nothing to change the pH of a solution, conjugates of weak bases (cation) behave as an acid.	
RbCl	$\mathrm{RbCl} \rightarrow \boldsymbol{R b}^{+1}+\boldsymbol{C l}^{1}$	Neutral!
	Conjugates of Strong Acids and Strong Bases do nothing to change the pH of a solution	

4. Calculate the pH of a $0.677 M \mathrm{RbC}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$ solution. K_{a} value for $\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$ is 8.65×10^{-4}.

Answer:

$$
R b C_{3} H_{3} N_{2} \text { is a SALT !!! } \quad R b C_{3} H_{3} N_{2} \rightarrow R b^{+1}+\boldsymbol{C}_{3} \boldsymbol{H}_{3} \mathbf{N}_{2}^{-1}
$$

$R b^{+1}$ is the conjugate of a strong BASE and will do nothing to change the pH . However, the $C_{3} \mathbf{H}_{3} \mathbf{N}_{2}{ }^{-1}$ is the conjugate of a weak acid - and this will behave as a BASE !!!

	$\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}^{-1}\right]$	+	$\left[\mathrm{H}_{2} \mathrm{O}\right]$	\leftrightarrow	$\left[\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right]$	+	$\left[\mathrm{OH}^{-1}\right]$
\mathbf{I}	$0.677 M$		-		0		0
\mathbf{C}	$-x$		-		$+x$		$+x$
\mathbf{E}	$0.677-x$		-		x		x

$$
K_{b}=\frac{\left[H C_{3} H_{3} N_{2}\right]\left[O H^{-1}\right]}{\left[C_{3} H_{3} N_{2}^{-1}\right]}
$$

Be sure to notice (recognize) that you CANNOT have [H^{+1}] in your expression ifyou are solving for K_{b}.

$$
\begin{gathered}
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{8.65 \times 10^{-4}}=1.16 \times 10^{-11} \\
K_{b}=1.16 \times 10^{-11}=\frac{\left[H C_{3} H_{3} N_{2}\right]\left[O H^{-1}\right]}{\left[C_{3} H_{3} N_{2}^{-1}\right]}=\frac{(x)(x)}{0.677-x}=\frac{x^{2}}{0.677} \\
K_{b}=1.16 \times 10^{-11}=\frac{x^{2}}{0.677} \\
\left(1.16 \times 10^{-11}\right)(0.677)=x^{2} \\
x=\sqrt{7.83 \times 10^{-12}}=2.80 \times 10^{-6} M=\left[O H^{-1}\right] \\
\mathrm{pOH}=-\log \left(2.80 \times 10^{-6}\right)=5.55 \\
\mathbf{p H}=14-\mathbf{p O H}=14-5.55=\mathbf{8 . 4 5}
\end{gathered}
$$

5. Find the pH of a solution that has 44.5 grams of rubidium hydroxide dissolved in 4.75 liters of water.

Answer:

RbOH is a STRONG BASE !!! \quad RbOH $\rightarrow \mathrm{Rb}^{+1}+\mathrm{OH}^{-1} \quad$ (100% dissociation (ionization))

Therefore, the (calculated) concentration is for the rubidium hydroxide is the same concentration (at the end of the reaction) for the Rb^{+1} AND $O H^{-1}!!!$

So, let's calculate the concentration of the RbOH that we initially begin with...

$$
\begin{gathered}
\frac{44.5 \mathrm{~g} \mathrm{RbOH}}{} \times \frac{1 \mathrm{~mole} \mathrm{RbOH}}{102.478 \mathrm{~g}}=0.434 \mathrm{~mole} \mathrm{RbOH} \\
M=\frac{0.434 \mathrm{~mole} \mathrm{RbOH}}{4.75 \mathrm{~L}}=0.0914 \mathrm{M}
\end{gathered}
$$

Okay, now that we know the initial concentration for the RbOH , we can assume that the concentration for the OH^{1} at the end of the reaction (dissociation of the RbOH - recall, this is NOT an equilibrium reaction)

$$
\left[O H^{-1}\right]=0.0914 \mathrm{M}
$$

$$
p O H=-\log \left[O H^{-1}\right]=-\log 0.0914=1.04
$$

$$
\mathbf{p H}=14-p O H=14-1.04=12.96
$$

6. Calculate the pH of a $3.44 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{7} \mathrm{ClO}_{4}$ solution. K_{b} value for $\mathrm{HC}_{7} \mathrm{H}_{6}$ is 2.11×10^{-3}.

Answer:

$$
\mathrm{HC}_{7} \mathrm{H}_{7} \mathrm{ClO}_{4} \text { is a SALT !!! } \quad \mathrm{HC}_{7} \mathrm{H}_{7} \mathrm{ClO}_{4} \rightarrow \mathbf{H C}_{7} \mathbf{H}_{7}^{+1}+\mathrm{ClO}_{4}^{-1}
$$

$\mathrm{HC}_{7} \mathrm{H}_{7}^{+1}$ is the conjugate of a weak BASE and will behave as an ACID. The ClO_{4}^{-1} is the conjugate of a STRONG acid and this will do nothing to change the pH. This salt causes the solution to become more acidic !!!

	$\left[\mathrm{HC}_{7} \mathrm{H}_{7}^{-1}\right]$	\leftrightarrow	$\left[\mathrm{HC}_{7} \mathrm{H}_{6}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	$3.44 M$		0		0
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$3.44-x$		x		x

$$
K_{a}=\frac{\left[H C_{7} H_{6}\right]\left[H^{+1}\right]}{\left[H C_{7} H_{7}^{-1}\right]}
$$

Be sure to notice (recognize) that you CANNOT have [H^{+1}] in your expression if you are solving for K_{b}.

$$
\begin{gathered}
K_{a}=\frac{K_{w}}{K_{b}}=\frac{1.00 \times 10^{-14}}{2.11 \times 10^{-3}}=4.74 \times 10^{-12} \\
K_{a}=4.74 \times 10^{-12}=\frac{\left[H C_{7} H_{6}\right]\left[H^{+1}\right]}{\left[H C_{7} H_{7}^{-1}\right]}=\frac{(x)(x)}{3.44-x}=\frac{x^{2}}{3.44} \\
K_{a}=4.74 \times 10^{-12}=\frac{x^{2}}{3.44} \\
\left(4.74 \times 10^{-12}\right)(3.44)=x^{2} \\
x=\sqrt{1.63 \times 10^{-11}}=4.04 \times 10^{-6} M=\left[H^{+1}\right] \\
\mathrm{pH}=-\log \left(4.04 \times 10^{-6}\right)=5.39
\end{gathered}
$$

7. a) Calculate the equilibrium constant, K, at a certain temperature for the reaction:

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3} \leftrightarrow \mathrm{H}^{+1}+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-1}
$$

if the initial concentration of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, was 4.33 M . When the reaction reaches equilibrium it is discovered that the lactic acid dissociated 0.677%.

Answer:

Lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, is a weak acid and will only have 0.677% of the original concentration will dissociate (or ionize) when the reaction reaches equilibrium.

$$
x=(4.33 M)(0.00677)=0.0293 M
$$

	$\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]$	\leftrightarrow	$\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	$4.33 M$		0		0
\mathbf{C}	$-x=-0.0293 M$		$+x=+0.0293 M$		$+x=+0.0293 \mathrm{M}$
\mathbf{E}	$4.33-0.0293=4.30$		0.0293		0.0293

b) Calculate the pH of a solution formed by dissolving 123 grams of solid francium lactate, $\mathrm{FrC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, in 1734 mL of the initial concentration of $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ (from part (a)). Assume that volume change is negligible.

Answer:

Francium lactate, $\mathrm{FrC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, is a SALT !!! $\mathrm{FrC}_{3} \mathrm{H}_{5} \mathrm{O}_{3} \rightarrow \mathrm{Fr}^{+1}+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-1}$ Fr^{+1} is the conjugate of a STRONG base and will do nothing to change the pH of the solution. The $C_{3} H_{5} O_{3}{ }^{-1}$ is the conjugate of a weak acid and this will behave as a BASE and cause the solution to become more basic !!!

Calculate the concentration of the salt:

$$
\begin{gathered}
\frac{123 g \mathrm{FrC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}}{} \times \frac{1 \text { mole } \mathrm{FrC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}}{312.07 \mathrm{~g}}=0.394 \text { mole } \mathrm{FrC}_{3} \mathrm{H}_{5} \mathrm{O}_{3} \\
M=\frac{0.394 \text { mole } \mathrm{Fr} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}}{1.734 \mathrm{~L}}=0.227 \mathrm{M}
\end{gathered}
$$

	$\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]$	\leftrightarrow	$\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	$4.33 M$		$0.227 M$	~ 0	
\mathbf{C}	$+x$		$-x$	$-x$	
\mathbf{E}	$4.33+x$		$0.227-x$		$\left[\mathrm{H}^{+1}\right]$

$$
\begin{aligned}
K_{a}=\frac{\left[C_{3} H_{5} O_{3}^{-1}\right]\left[H^{+1}\right]}{\left[H C_{3} H_{5} O_{3}\right]} & =\frac{(0.227-x)\left[H^{+1}\right]}{(4.33+x)}=\frac{(0.227)\left[H^{+1}\right]}{(4.33)}=0.0001996 \\
{\left[H^{+1}\right] } & =\frac{(4.33)(0.0001996)}{(0.227)}=0.00381 \\
\mathrm{pH} & =-\log (0.00381)=\mathbf{2 . 4 2}
\end{aligned}
$$

8. Fill in the missing information in the following table:

pH	pOH	$\left[\mathrm{H}^{+1}\right]$	$\left[\mathrm{OH}^{-1}\right]$	acid, base or neutral
$\mathbf{1 0 . 5 6}$	3.44	$\mathbf{2 . 7 5 \times 1 0 ^ { - \mathbf { 1 1 } }}$	$\mathbf{3 . 6 3 \times 1 0 ^ { - 4 }}$	Basic
$\mathbf{3 . 5 7}$	$\mathbf{1 0 . 4 3}$	2.70×10^{-4}	$\mathbf{3 . 7 0 \times 1 0} \mathbf{~ 1 1}$	Acidic
7.39	$\mathbf{6 . 6 1}$	$\mathbf{4 . 0 7 \times 1 \mathbf { 1 0 } ^ { - \mathbf { 8 } }}$	$\mathbf{2 . 4 5 \times 1 0 ^ { - 7 }}$	Basic
$\mathbf{6 . 8 9}$	$\mathbf{7 . 1 1}$	$\mathbf{1 . 2 8 \times 1 0 ^ { - 7 }}$	7.84×10^{-8}	Acidic

