AP CHEMISTRY

TOPIC 7: ACIDS & BASES, REVIEW PART IV – DO THIS !!!

Acids:	Bases:
HCl	LiOH
HBr	NaOH
HI	KOH
HNO ₃	RbOH
HClO ₄	CsOH
H_2SO_4 (Only the first dissociation is strong!)	FrOH
	$Ca(OH)_2$ (Both OH^{-1} will dissociate)
	$Sr(OH)_2$ (Both OH^{-1} will dissociate)
	$Ba(OH)_2$ (Both OH^1 will dissociate)

2. What is the:

Conjugate Acid for:	Base for:	Conjugate Base for:	Acid for:
HB ₄ O ₇ ⁻¹ : $H_2B_4O_7$	$HPO_4^{-2} : PO_4^{-3}$	HB ₄ O ₇ ⁻¹ : $B_4O_7^{-2}$	HPO ₄ ⁻² : $H_2PO_4^{-1}$
$HCrO_4^{-1} : H_2CrO_4$	$H_2PO_4^{-1}$: HPO _4^{-2}	HCrO ₄ ⁻¹ : CrO_4^{-2}	$H_2PO_4^{-1}$: H_3PO_4
$HC_2O_4^{-1}$: $H_2C_2O_4$	HSCN ⁻¹ : SCN^{-2}	$HC_2O_4^{-1} : C_2O_4^{-2}$	HSCN ⁻¹ : H_2SCN
$\mathrm{HCr}_{2}\mathrm{O}_{7}^{-1} : \mathbf{H}_{2}\mathbf{Cr}_{2}\mathbf{O}_{7}$	$H_2SiO_4^{-2}$: HSiO_4^{-3}	HCr ₂ O ₇ ⁻¹ : $Cr_2O_7^{-2}$	$H_2SiO_4^{-1}$: H_3SiO_4
HWO_4^{-1} : H_2WO_4	$HSO_{3}^{-1}: SO_{3}^{-2}$	HWO ₄ ⁻¹ : WO_4^{-2}	$\mathrm{HSO_3}^{-1}: \ H_2SO_3$

3. Write the dissociation reaction for each of the following salts when placed in water and determine if the solution will become acidic, basic or remain neutral – THEN identify "the thing" that causes the solution to become this way.

Salt:	Reaction that causes the solution to become	Acidic, Basic or Remain
NaC ₃ H ₇ O ₂	$NaC_3H_7O_2 \rightarrow Na^{+1} + C_3H_7O_2^{-1}$; $C_3H_7O_2^{-1} + H_2O \leftrightarrow HC_3H_7O_2 + OH^1$	<i>Neutral</i> Basic
	Conjugates of Strong Bases (cation) do nothing to change the pH of a solution, conjugates of weak acids (anion) behave as a base.	
C ₄ H ₄ O ₂ HI	$C_4H_4O_2HI \rightarrow C_4H_4O_2H^{+1} + \Gamma^{\prime} ; C_4H_4O_2H^{+\prime} \leftrightarrow C_4H_4O_2 + H^{+1}$	Acidic
	Conjugates of Strong Acids (anion) do nothing to change the pH of a solution, conjugates of weak bases (cation) behave as an acid.	
Cs ₂ SO ₄	$Cs_2SO_4 \rightarrow 2 Cs^{+I} + SO_4^{-2}$; $SO_4^{-2} + HOH \leftrightarrow HSO_4^{-1} + OH^{-1}$	Basic
	Conjugates of Strong Bases (cation) do nothing to change the pH of a solution, conjugates of weak acids (anion) behave as a base.	
	.1	
CH ₃ N ₂ HNO ₃	$\mathrm{CH}_{3}\mathrm{N}_{2}\mathrm{HNO}_{3} \rightarrow \mathrm{CH}_{3}\mathrm{N}_{2}\mathrm{H}^{+1} + \mathrm{NO}_{3}^{-1} ; \mathrm{CH}_{3}\mathrm{N}_{2}\mathrm{H}^{+1} \leftrightarrow \mathrm{CH}_{3}\mathrm{N}_{2} + \mathrm{H}^{+1}$	Acidic
	Conjugates of Strong Acids (anion) do nothing to change the pH of a solution, conjugates of weak bases (cation) behave as an acid.	
	1	-
RbF	$\operatorname{RbF} \to \mathbf{Rb}^{+I} + \mathbf{F}^{-1}$; $\operatorname{F}^{-1} + \operatorname{H}_2\operatorname{O} \leftrightarrow \operatorname{HF} + \operatorname{OH}^{-1}$	Basic
	Conjugates of Strong Bases (cation) do nothing to change the pH of a solution, conjugates of weak acids (anion) behave as a base	
HNNH ₂ Br	$\text{HNNH}_2\text{Br} \rightarrow \text{HNNH}_2^{+1} + Br^{-1}$; $\text{HNNH}_2^{+1} \leftrightarrow \text{HNNH} + \text{H}^{+1}$	Acidic
	Conjugates of Strong Acids (anion) do nothing to change the pH of a solution, conjugates of weak bases (cation) behave as an acid.	
		D .
$Ba(C_2H_3O_2)_2$	$\operatorname{Ba}_{1}(C_{2}H_{3}O_{2})_{2} \rightarrow Ba^{+2} + 2 \operatorname{C}_{2}H_{3}O_{2}^{-1} ; C_{2}H_{3}O_{2}^{-1} + H_{2}O \leftrightarrow HC_{2}H_{3}O_{2} + OH^{-1}$	Basic
	Conjugates of Strong Bases (cation) do nothing to change the pH of a solution, conjugates of weak acids (anion) behave as a base.	
0.11.21.22		
C ₅ H ₃ N ₃ HCl	$C_5H_3N_3HCl \rightarrow C_5H_3N_3H^{+1} + Cl^{-1}; C_5H_3N_3H^{+1} \leftrightarrow C_5H_3N_3 + H^{+1}$	Acidic
	Conjugates of Strong Acids (anion) do nothing to change the pH of	
	a solution, conjugates of weak bases (cation) behave as an acid.	
RbCl	$RbCl \rightarrow Rb^{+1} + Cl^{-1}$	Neutral !
	Conjugates of Strong Acids and Strong Bases do nothing to change the nH of a solution	

4. Calculate the pH of a 0.677 *M* RbC₃H₃N₂ solution. K_a value for HC₃H₃N₂ is 8.65 x 10⁻⁴.

Answer:

$$RbC_3H_3N_2$$
 is a SALT !!! $RbC_3H_3N_2 \rightarrow Rb^{+1} + C_3H_3N_2^{-1}$

 Rb^{+1} is the conjugate of a strong BASE and will do nothing to change the pH. However, the $C_3H_3N_2^{-1}$ is the conjugate of a weak acid – and this will behave as a BASE !!!

	$[C_{3}H_{3}N_{2}^{-1}]$	+	[H ₂ O]	\leftrightarrow	[HC ₃ H ₃ N ₂]	+	[OH ⁻¹]
Ι	0.677 M		-		0		0
С	- x		-		+x		+x
Ε	0.677 - <i>x</i>		-		x		x

$$K_{b} = \frac{\left[HC_{3}H_{3}N_{2} \right] \left[OH^{-1} \right]}{\left[C_{3}H_{3}N_{2}^{-1} \right]}$$

Be sure to notice (recognize) that you CANNOT have $[H^{+1}]$ *in your expression if you are solving for* K_b .

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.00 \times 10^{-14}}{8.65 \times 10^{-4}} = 1.16 \times 10^{-11}$$

$$K_{b} = 1.16 \times 10^{-11} = \frac{\left[HC_{3}H_{3}N_{2} \right] \left[OH^{-1} \right]}{\left[C_{3}H_{3}N_{2}^{-1} \right]} = \frac{(x)(x)}{0.677 - x} = \frac{x^{2}}{0.677}$$

$$K_{b} = 1.16 \times 10^{-11} = \frac{x^{2}}{0.677}$$

$$\left(1.16 \times 10^{-11} \right) \left(0.677 \right) = x^{2}$$

$$x = \sqrt{7.83 \times 10^{-12}} = 2.80 \times 10^{-6} M = \left[OH^{-1} \right]$$

$$pOH = -\log(2.80 \times 10^{-6}) = 5.55$$

$$pH = 14 - pOH = 14 - 5.55 = 8.45$$

5. Find the pH of a solution that has 44.5 grams of rubidium hydroxide dissolved in 4.75 liters of water.

Answer:

RbOH is a STRONG BASE !!! $RbOH \rightarrow Rb^{+1} + OH^{-1}$ (100% dissociation (ionization))

Therefore, the (calculated) concentration is for the rubidium hydroxide is the same concentration (at the end of the reaction) for the Rb^{+1} *AND* OH^{1} *!!!*

So, let's calculate the concentration of the RbOH that we initially begin with...

$$\frac{44.5 \ g \ RbOH}{102.478 \ g} \times \frac{1 \ mole \ RbOH}{102.478 \ g} = 0.434 \ mole \ RbOH$$
$$M = \frac{0.434 \ mole \ RbOH}{4.75 \ L} = 0.0914 \ M$$

Okay, now that we know the initial concentration for the RbOH, we can assume that the concentration for the OH^1 at the end of the reaction (dissociation of the RbOH – recall, this is NOT an equilibrium reaction)

 $\begin{bmatrix} OH^{-1} \end{bmatrix} = 0.0914 \ M$ $pOH = -\log \begin{bmatrix} OH^{-1} \end{bmatrix} = -\log \ 0.0914 = 1.04$ pH = 14 - pOH = 14 - 1.04 = 12.96

6. Calculate the pH of a 3.44 M HC₇H₇ClO₄ solution. K_b value for HC₇H₆ is 2.11 x 10⁻³.

Answer:

$$HC_7H_7ClO_4$$
 is a SALT !!! $HC_7H_7ClO_4 \rightarrow HC_7H_7^{+1} + ClO_4^{-1}$

 $HC_7H_7^{+1}$ is the conjugate of a weak BASE and will behave as an ACID. The ClO_4^{-1} is the conjugate of a STRONG acid and this will do nothing to change the pH. This salt causes the solution to become more acidic !!!

	[HC ₇ H ₇ ⁻¹]	\leftrightarrow	[HC ₇ H ₆]	+	[H ⁺¹]
Ι	3.44 M		0		0
С	- x		+x		+x
E	3.44 - <i>x</i>		x		x

$$K_{a} = \frac{\left[HC_{7}H_{6} \right] \left[H^{+1} \right]}{\left[HC_{7}H_{7}^{-1} \right]}$$

Be sure to notice (recognize) that you CANNOT have $[H^{+1}]$ *in your expression if you are solving for* K_b .

$$K_{a} = \frac{K_{w}}{K_{b}} = \frac{1.00 \times 10^{-14}}{2.11 \times 10^{-3}} = 4.74 \times 10^{-12}$$

$$K_{a} = 4.74 \times 10^{-12} = \frac{\left[HC_{7}H_{6}\right]\left[H^{+1}\right]}{\left[HC_{7}H_{7}^{-1}\right]} = \frac{(x)(x)}{3.44 - x} = \frac{x^{2}}{3.44}$$

$$K_{a} = 4.74 \times 10^{-12} = \frac{x^{2}}{3.44}$$

$$\left(4.74 \times 10^{-12}\right)\left(3.44\right) = x^{2}$$

$$x = \sqrt{1.63 \times 10^{-11}} = 4.04 \times 10^{-6} M = \left[H^{+1}\right]$$

$$pH = -\log\left(4.04 \times 10^{-6}\right) = 5.39$$

7. a) Calculate the equilibrium constant, K, at a certain temperature for the reaction:

 $HC_3H_5O_3 \leftrightarrow H^{+1} + C_3H_5O_3^{-1}$

if the initial concentration of lactic acid, $HC_3H_5O_3$, was 4.33 *M*. When the reaction reaches equilibrium it is discovered that the lactic acid dissociated 0.677 %.

Answer:

Lactic acid, $HC_3H_5O_3$, is a weak acid and will only have 0.677% of the original concentration will dissociate (or ionize) when the reaction reaches equilibrium.

	[HC ₃ H ₅ O ₃]	\leftrightarrow	$[C_3H_5O_3^{-1}]$	+	[H ⁺¹]
Ι	4.33 M		0		0
С	-x = -0.0293 M		+x = +0.0293 M		+x = +0.0293 M
Ε	4.33 - 0.0293 = 4.30		0.0293		0.0293

x = (4.33 M)(0.00677) = 0.0293 M

K	$= \frac{\left[C_3 H_5 O_3^{-1} \right] \left[H^{+1} \right]}{=}$	$(0.0293)^2$	= 0.0001996
n _a	$\begin{bmatrix} HC_3H_5O_3 \end{bmatrix}$	(4.33-0.0293)	- 0.0001770

b) Calculate the pH of a solution formed by dissolving 123 grams of solid francium lactate, FrC₃H₅O₃, in 1734 mL of the *initial* concentration of HC₃H₅O₃ (from part (a)). Assume that volume change is negligible.

Answer:

Francium lactate, $FrC_3H_5O_3$, is a SALT !!! $FrC_3H_5O_3 \rightarrow Fr^{+1} + C_3H_5O_3^{-1}$ Fr^{+1} is the conjugate of a STRONG base and will do nothing to change the pH of the solution. The $C_3H_5O_3^{-1}$ is the conjugate of a weak acid and this will behave as a BASE and cause the solution to become more basic !!!

Calculate the concentration of the salt:

 $\frac{123 \ g \ FrC_3H_5O_3}{M} \times \frac{1 \ mole \ FrC_3H_5O_3}{312.07 \ g} = 0.394 \ mole \ FrC_3H_5O_3$ $M = \frac{0.394 \ mole \ FrC_3H_5O_3}{1\ 734 \ L} = 0.227 \ M$

	[HC ₃ H ₅ O ₃]	\leftrightarrow	$[C_3H_5O_3^{-1}]$	+	[H ⁺¹]
Ι	4.33 M		0.227 M		~ 0
С	+x		- <i>x</i>		- <i>x</i>
E	4.33 + x		0.227 - x		[H ⁺¹]

$$K_{a} = \frac{\left[\begin{array}{c}C_{3}H_{5}O_{3}^{-1}\right]\left[\begin{array}{c}H^{+1}\end{array}\right]}{\left[\begin{array}{c}HC_{3}H_{5}O_{3}\end{array}\right]} = \frac{\left(0.227 - x\right)\left[\begin{array}{c}H^{+1}\end{array}\right]}{\left(4.33 + x\right)} = \frac{\left(0.227\right)\left[\begin{array}{c}H^{+1}\end{array}\right]}{\left(4.33\right)} = 0.0001996$$
$$\left[\begin{array}{c}H^{+1}\end{array}\right] = \frac{\left(4.33\right)\left(0.0001996\right)}{\left(0.227\right)} = 0.00381$$
$$pH = -\log\left(0.00381\right) = 2.42$$

pH	рОН	[H ⁺¹]	[OH ⁻¹]	acid, base or neutral
10.56	3.44	2.75 x 10 ⁻¹¹	3.63 x 10 ⁻⁴	Basic
3.57	10.43	2.70 x 10 ⁻⁴	3.70 x 10 ⁻¹¹	Acidic
7.39	6.61	4.07 x 10 ⁻⁸	2.45×10^{-7}	Basic
6.89	7.11	1.28 x 10⁻⁷	7.84 x 10 ⁻⁸	Acidic

8. Fill in the missing information in the following table: