Topic 7: Acids \& Bases, Part E,
EXAMPLES
Day 87:

- Buffers

Answers:

Example \#1, part 1: A buffered solution (at equilibrium) contains 0.75 M acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, K_{a}=1.8 \times 10^{-5}\right)$ and 0.75 M sodium acetate, $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. Calculate the pH of this solution.

	$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$	\rightleftharpoons	$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	0.75 M		0.75 M		~ 0
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$0.75-x$		$0.75+x$		x

$$
\begin{gathered}
\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}\right]\left[\mathrm{H}^{+1}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{(0.75-x)(x)}{0.75+x}=\frac{(0.75)(x)}{0.75}=1.8 \times 10^{-5} \\
x=\frac{(0.75)\left(1.8 \times 10^{-5}\right)}{0.75}=\left[H^{+}\right] \\
p H=-\log 1.8 \times 10^{-5}=4.74
\end{gathered}
$$

Example \#1, part 2: Calculate the change in pH that occurs when 0.010 mol of gaseous hydrochloric acid, HCl , is added to 1.0 liter of the buffered solution (from part 1). Compare the above pH with the pH when the hydrochloric acid is added.

$$
0.010 \mathrm{M} \mathrm{HCl} \rightarrow 0.010 \mathrm{M} \mathrm{H}^{+1}+0.010 \mathrm{M} \mathrm{Cl}^{-1}
$$

	$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$	\leftarrow	$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	0.75 M		0.75 M		0.010
\mathbf{C}	+0.010		-0.010		-0.010
\mathbf{E}	$0.75+0.010=0.760$		$0.75-0.010=0.740$		~ 0

$$
\begin{gathered}
\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}\right]\left[\mathrm{H}^{+1}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{(0.740)\left[\mathrm{H}^{+1}\right]}{0.760}=1.8 \times 10^{-5} \\
\frac{(0.760)\left(1.8 \times 10^{-5}\right)}{0.740}=\left[H^{+1}\right]=1.85 \times 10^{-5} \\
p H=-\log 1.85 \times 10^{-5}=4.73
\end{gathered}
$$

Change is -0.01 in pH
The pH of 0.010 mol of HCl (in this solution) would equal 2.00 had the buffer not been in place.
The pH would have changed MUCH more than 0.01 .

