TOPIC 7: ACIDS \& BASES, PART E, Part II Day 88:

- Buffers

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS.

$$
\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2(\mathrm{aq})} \leftrightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}(\mathrm{aq})
$$

1. Benzoic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, is a monoprotic acid that dissociates in an aqueous solution, as represented in the equation above. Benzoic acid is 3.29 percent dissociated in $0.85 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ (aq) at 298 K . For parts (a) through (d) below, assume the temperature remains at 298 K .
(a) Write the expression for the acid-dissociation constant, K_{a}., for benzoic acid and calculate its value.

$$
K_{a}=\frac{\left[H^{+1}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}
$$

$$
0.85 M \times 0.0329=0.027965 M=x
$$

	$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right]$	\leftrightarrow	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}{ }^{-1}\right]$
\mathbf{I}	0.85 M		0		0
\mathbf{C}	$0.85-0.027965$		+0.027965		+0.027965
\mathbf{E}	0.822035		0.027965		0.027965

$$
K_{a}=\frac{(0.027965)^{2}}{0.822035}=9.51 \times 10^{-4}
$$

(b) Calculate the pH of $0.85 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$.

$$
\mathbf{p H}=-\log \left[\mathrm{H}^{+1}\right]=-\log (0.027965)=\mathbf{1 . 5 5}
$$

(c) Calculate the pH of a solution formed by dissolving 0.067 mol of solid sodium benzonate, $\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$. in 250 mL of $0.85 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$. Assume the volume changes is negligible.

$$
M=\frac{0.067 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{0.250 \mathrm{~L}}=0.268 \mathrm{M} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}
$$

$$
\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+1}+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-1}(\text { strong electrolyte })
$$

	$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]$	\leftrightarrow	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-1}\right]$
\mathbf{I}	$0.85 M$		~ 0		0.268 M
\mathbf{C}	$+x$		$-x$		$-x$
\mathbf{E}	$0.85+x$		$\left[\mathrm{H}^{+1}\right]$		$0.268-x$

$$
\begin{gathered}
K_{a}=\frac{\left[H^{+1}\right]\left[C_{7} H_{5} \mathrm{O}^{-1}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}=\frac{\left[\mathrm{H}^{+1}\right](0.268-x)}{(0.85+x)}=\frac{\left[\mathrm{H}^{+1}\right](0.268)}{(0.85)}=9.51 \times 10^{-4} \\
{\left[\mathrm{H}^{+1}\right]=\frac{\left(9.51 \times 10^{-4}\right)(0.85)}{(0.268)}=3.02 \times 10^{-3}} \\
\mathbf{p H}=-\log \left[\mathrm{H}^{+1}\right]=-\log \left(3.02 \times 10^{-3}\right)=\mathbf{2 . 5 2} \\
\mathbf{O R}
\end{gathered}
$$

$$
\mathbf{p H}=p K_{a}+\log \frac{\left[A^{-1}\right]}{[H A]}=-\log \left(9.51 \times 10^{-4}\right)+\log \left(\frac{0.268}{0.85}\right)=2.52
$$

(d) 5.33 grams of solid HCl is added to 250 mL of the solution created in part (c). Calculate the pH , in the resulting solution.

$$
\begin{gathered}
\frac{5.33 \mathrm{~g} \mathrm{HCl}}{} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.458 \mathrm{~g}}=0.146 \mathrm{~mol} \mathrm{HCl} \\
\frac{0.146 \mathrm{~mol} \mathrm{HCl}}{0.250 \mathrm{~L}}=0.585 \mathrm{M} \mathrm{HCl}
\end{gathered}
$$

	$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]$	\leftarrow	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-1}\right]$
\mathbf{I}	$0.850 M$		0.585 M		0.268 M
\mathbf{C}	+0.268		-0.268		-0.268
\mathbf{E}	$0.850+0.268=1.118$		$0.585-0.268=0.317$	~ 0	

This is not a "good" buffer solution.
The solution could not handle the additional H^{+1} ions (from the strong acid). Since this solution is unable to handle the additional strong acid, we KNOW the concentration of the H^{+1} at equilibrium. Therefore:

$$
\mathbf{p H}=-\log \left[\mathrm{H}^{+1}\right]=-\log (0.317)=\mathbf{0 . 5 0}
$$

2. A buffered solution (at equilibrium) contains 3.75 M acetic acid, $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, K_{a}=1.80 \times 10^{-5}\right)$ and 2.43 M potassium acetate, $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
a) Calculate the pH of this solution.

$$
\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{~K}^{+1}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1} \text { (strong electrolyte) }
$$

	$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$	\leftrightarrow	$\left[\mathrm{H}^{+1}\right]$	+	$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-1}\right]$
\mathbf{E}	3.75 M		~ 0		2.43 M

$$
\begin{gathered}
K_{a}=\frac{\left[H^{+1}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{\left[H^{+1}\right](2.43)}{(3.75)}=1.80 \times 10^{-5} \\
{\left[H^{+1}\right]=\frac{\left(1.80 \times 10^{-5}\right)(3.75)}{(2.43)}=2.78 \times 10^{-5}} \\
\mathbf{p H}=-\log \left[\mathrm{H}^{+1}\right]=-\log \left(2.78 \times 10^{-5}\right)=\mathbf{4 . 5 6} \\
\mathbf{p H}=p K_{a}+\log \frac{\mathbf{O R}}{\left[A^{-1}\right]}=-\log \left(1.80 \times 10^{-5}\right)+\log \left(\frac{2.43}{3.75}\right)=4.56
\end{gathered}
$$

b) Calculate the pH after 34.3 grams of $\mathrm{NaOH}_{(\mathrm{s})}$ is added to 1.0 L of this solution (volume change is negligible).

$$
\begin{gathered}
\frac{34.3 \mathrm{~g} \mathrm{NaOH}}{39.998 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{3.858 \mathrm{~mol} \mathrm{NaOH}} \\
\frac{0.858 \mathrm{~mol} \mathrm{NaOH}}{1 L}=0.858 \mathrm{M} \mathrm{NaOH}
\end{gathered}
$$

	$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}\right]$	+	$\left[\mathrm{H}_{2} \mathrm{O}\right]$	\leftarrow	$\left[\mathrm{OH}^{-1}\right]$	+	$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$
\mathbf{I}	2.43 M		-		0.858 M		3.75 M
\mathbf{C}	+0.858		-		-0.858		-0.858
\mathbf{E}	3.288		-		~ 0		2.892

$$
\mathbf{p H}=p K_{a}+\log \frac{\left[A^{-1}\right]}{[H A]}=-\log \left(1.80 \times 10^{-5}\right)+\log \left(\frac{3.288}{2.892}\right)=4.80
$$

$$
\begin{gathered}
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{1.80 \times 10^{-5}}=5.56 \times 10^{-10} \\
K_{b}=\frac{\left[\mathrm{OH}^{-1}\right]\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}\right]}=\frac{\left[\mathrm{OH}^{-1}\right](2.892)}{(3.288)}=5.56 \times 10^{-10} \\
{\left[\mathrm{OH}^{-1}\right]=\frac{\left(5.56 \times 10^{-10}\right)(3.288)}{(2.892)}=6.32 \times 10^{-10}} \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-1}\right]=-\log \left(6.32 \times 10^{-10}\right)=9.20 \\
\mathbf{p H}=14-\mathrm{pOH}=14-9.20=4.8 \mathbf{4}
\end{gathered}
$$

