AP CHEMISTRY

Topic 7: Acids \& BASES, PART F, EXAMPLES - PART II
Day 94:

Methylamine, $\mathrm{CH}_{4} \mathrm{OH}$, is a weak base in water. The K_{b} expression is shown above.
a) Write a chemical equation showing how $\mathrm{CH}_{4} \mathrm{OH}$ behaves as an base in water.

$$
\mathrm{CH}_{4} \mathrm{OH}+\mathrm{HOH} \rightleftharpoons \mathrm{OH}+\mathrm{CH}_{4} \mathrm{OH}_{2}^{+1}
$$

b) Calculate the pH of a 0.588 M solution of $\mathrm{CH}_{4} \mathrm{OH}$.

	$[\mathrm{HOBr}]$	\rightleftharpoons	$\left[\mathrm{OBr}^{-1}\right]$	+	$\left[\mathrm{H}^{+1}\right]$
\mathbf{I}	0.175		0		0
\mathbf{C}	$-x$		$+x$		$+x$
\mathbf{E}	$0.175-x$		x		x

$$
\begin{gathered}
K_{a}=\frac{\left[H^{+1}\right]\left[\mathrm{OBr}^{-1}\right]}{[H O B r]}=\frac{x^{2}}{(0.175-x)}=\frac{x^{2}}{(0.175)}=2.00 \times 10^{-9} \\
x^{2}=\left(2.00 \times 10^{-9}\right)(0.175)=3.50 \times 10^{-10} \\
x=\sqrt{3.50 \times 10^{-10}}=1.87 \times 10^{-5} \\
x=\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=\left[\mathrm{H}^{+1}\right]=1.87 \times 10^{-5} \mathrm{M} \\
\mathbf{p H}=-\log \left(1.87 \times 10^{-5}\right)=\mathbf{4 . 7 3}
\end{gathered}
$$

c) Write the net ionic equation for the reaction between the weak base, $\mathrm{CH}_{4} \mathrm{OH}\left(\right.$ aq) and the strong acid, $\mathrm{HNO}_{3 \text { (aq) }}$.

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}^{+1}+\mathrm{OH}^{-1} \quad \mathrm{HOBr} \rightleftharpoons \mathrm{H}^{+1}+\mathrm{OBr}^{-1}
$$

Ionic Equation:

$$
\mathrm{Na}_{(\mathrm{aq})}^{+1}+\mathrm{OH}_{(\mathrm{aq})}^{-1}+\mathrm{H}_{(\mathrm{aq})}^{+1}+\mathrm{OBr}_{(\mathrm{aq})}^{-1} \rightarrow \mathrm{Na}_{(\mathrm{aq})}^{+1}+\mathrm{OBr}_{(\mathrm{aq})}^{-1}+\boldsymbol{H}_{2} \boldsymbol{O}_{(\mathrm{l})}
$$

Net Ionic Equation:

$$
\mathrm{OH}_{(\mathrm{aq})}^{-1}+\mathrm{H}_{(\mathrm{aq})}^{+1} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Net Ionic Equation (Definition): A net ionic equation is written by dropping out the spectator ions and showing only those chemical species that are involved in the chemical reaction.

This reaction is an important (neutralization) reaction that occurs when an acid $\left(\mathrm{H}^{+1}\right)$ reacts with a base $\left(\mathrm{OH}^{-1}\right)$.
d) In an experiment, 42.0 mL of $0.588 \mathrm{M} \mathrm{CH}_{4} \mathrm{OH}_{(\mathrm{aq})}$ is placed in a flask and titrated with 10.0 mL of $0.400 \mathrm{M}^{\left(\mathrm{HNO}_{3} \text { (aq) }\right.}$.
(i) Calculate the number of moles of $\mathrm{HNO}_{3 \text { (aq) }}$ added.

Number of moles $(\mathrm{NaOH}):=\frac{6.55 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.435 \mathrm{~mol}}{L}=0.00285 \mathrm{~mol} \mathrm{NaOH}=\mathrm{OH}^{-1}$
(ii) Calculate $\left[\mathrm{OH}^{-1}\right.$] in the flask after the HNO_{3} (aq) has been added.
Number of moles (HOBr): $=\frac{20.00 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.175 \mathrm{~mol}}{L}=0.00350 \mathrm{~mol} \mathrm{HOBr}$
Total Volume: $20.0 \mathrm{~mL}+6.55 \mathrm{~mL}=26.55 \mathrm{~mL}=0.02655 \mathrm{~L}$

$$
[\mathrm{HOBr}]=\frac{0.00350 \mathrm{~mol}}{0.02655 \mathrm{~L}}=0.1318 \mathrm{M} \quad ; \quad\left[\mathrm{OH}^{-1}\right]=\frac{0.00285 \mathrm{~mol}}{0.02655 \mathrm{~L}}=0.107 \mathrm{M}
$$

	OBr^{-1}	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	HOBr	+	OH^{-1}
\mathbf{I}	~ 0		-		0.1318		0.107
\mathbf{C}	+0.107		-		-0.107		-0.107
\mathbf{E}	0.107		-		0.0248		~ 0

$$
\begin{gathered}
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{2.00 \times 10^{-9}}=5.00 \times 10^{-6} \\
K_{b}=\frac{[H O B r]\left[O H^{-1}\right]}{\left[O B r^{-1}\right]}=\frac{(0.0248)\left[O H^{-1}\right]}{(0.107)}=5.00 \times 10^{-6} \\
\frac{\left(5.00 \times 10^{-6}\right)(0.107)}{(0.0248)}=2.15 \times 10^{-5}=\left[O H^{-1}\right] \\
K_{w}=\left[H^{+1}\right]\left[O H^{-1}\right]=1.00 \times 10^{-14} \\
{\left[H^{+1}\right]=\frac{1.00 \times 10^{-14}}{\left[O H^{-1}\right]}=\frac{1.00 \times 10^{-14}}{2.15 \times 10^{-5}}=4.64 \times 10^{-10}}
\end{gathered}
$$

OR, you could find the pH and then calculate the Antilog (-pH) to get the [H^{+1}].
(iii) Calculate $\left[\mathrm{H}^{+1}\right]$ in the flask after the $\mathrm{HNO}_{3 \text { (aq) }}$ has been added.

$$
\begin{gathered}
K_{w}=\left[H^{+1}\right]\left[O H^{-1}\right]=1.00 \times 10^{-14} \\
{\left[O H^{-1}\right]=\frac{1.00 \times 10^{-14}}{\left[H^{+1}\right]}=\frac{1.00 \times 10^{-14}}{4.64 \times 10^{-10}}=2.15 \times 10^{-5} \mathrm{M}}
\end{gathered}
$$

(iv) Calculate the pH of the titration solution after the HNO_{3} (aq) has been added.

$$
\mathbf{p H}=-\log \left(4.64 \times 10^{-10}\right)=\mathbf{9 . 3 3}
$$

