AP CHEMISTRY

TOPIC 7: ACIDS & BASES, PART F, EXAMPLES - PART II

• Titrations • pH curve • Indicators $K_{b} = \frac{\left[OH^{-1} \right] \left[CH_{4}OH_{2}^{+1} \right]}{\left[CH_{4}OH \right]} = 4.57 \times 10^{-5}$

Methylamine, CH₄OH, is a weak base in water. The K_b expression is shown above.

a) Write a chemical equation showing how CH₄OH behaves as an base in water.

 $CH_4OH + HOH \rightleftharpoons OH + CH_4OH_2^{+1}$

b) Calculate the pH of a 0.588 M solution of CH₄OH.

	[HOBr]	\rightleftharpoons	[OBr ⁻¹]	+	$[H^{+1}]$
Ι	0.175		0		0
С	- <i>x</i>		+x		+x
Ε	0.175 - <i>x</i>		x		x

$$K_{a} = \frac{\left[\begin{array}{c}H^{+1}\end{array}\right]\left[\begin{array}{c}OBr^{-1}\end{array}\right]}{\left[\begin{array}{c}HOBr\end{array}\right]} = \frac{x^{2}}{\left(\begin{array}{c}0.175-x\end{array}\right)} = \frac{x^{2}}{\left(\begin{array}{c}0.175\end{array}\right)} = 2.00 \times 10^{-9}$$
$$x^{2} = \left(\begin{array}{c}2.00 \times 10^{-9}\end{array}\right)\left(\begin{array}{c}0.175\end{array}\right) = 3.50 \times 10^{-10}$$
$$x = \sqrt{3.50 \times 10^{-10}} = 1.87 \times 10^{-5}$$
$$x = \left[\begin{array}{c}H_{3}O^{+1}\end{array}\right] = \left[\begin{array}{c}H^{+1}\end{array}\right] = 1.87 \times 10^{-5} M$$
$$\mathbf{pH} = -\log\left(\begin{array}{c}1.87 \times 10^{-5}\end{array}\right) = \mathbf{4.73}$$

c) Write the net ionic equation for the reaction between the weak base, CH₄OH (aq) and the strong acid, HNO_{3 (aq)}.

$$NaOH \rightarrow Na^{+1} + OH^{-1} \qquad HOBr \rightleftharpoons H^{+1} + OBr^{-1}$$
$$Ionic Equation:$$
$$Na^{+1}_{(aq)} + OH^{-1}_{(aq)} + H^{+1}_{(aq)} + OBr^{-1}_{(aq)} \rightarrow Na^{+1}_{(aq)} + OBr^{-1}_{(aq)} + H_2O$$
$$Net Ionic Equation:$$
$$OH^{-1}_{(aq)} + H^{+1}_{(aq)} \rightarrow H_2O_{(l)}$$

Net Ionic Equation (Definition): A net ionic equation is written by dropping out the spectator ions and showing only those chemical species that are involved in the chemical reaction.

This reaction is an important (**neutralization**) reaction that occurs when an acid (H^{+1}) reacts with a base (OH^{-1}) .

Day 94:

(*l*)

- d) In an experiment, 42.0 mL of 0.588 M CH₄OH (aq) is placed in a flask and titrated with 10.0 mL of 0.400 M HNO_{3 (aq)}.
 - (i) Calculate the number of moles of $HNO_{3 (aq)}$ added.

Number of moles (NaOH): = $\frac{6.55 \ mL}{1000 \ mL} \times \frac{1 \ L}{1000 \ mL} \times \frac{0.435 \ mol}{L} = 0.00285 \ mol \ NaOH = OH^{-1}$

(ii) Calculate [OH^{-1}] in the flask after the HNO_{3 (aq)} has been added.

Number of moles (HOBr): =
$$\frac{20.00 \ mL}{1000 \ mL} \times \frac{1 \ L}{1000 \ mL} \times \frac{0.175 \ mol}{L} = 0.00350 \ mol \ HOBr$$

Total Volume: 20.0 mL + 6.55 mL = 26.55 mL = 0.02655 L

$$\begin{bmatrix} HOBr \end{bmatrix} = \frac{0.00350 \ mol}{0.02655 \ L} = 0.1318 \ M$$
; $\begin{bmatrix} OH^{-1} \end{bmatrix} = \frac{0.00285 \ mol}{0.02655 \ L} = 0.107 \ M$

	OBr ⁻¹	+	H ₂ O	\rightleftharpoons	HOBr	+	OH ⁻¹
Ι	~ 0		-		0.1318		0.107
С	+0.107		-		- 0.107		- 0.107
Ε	0.107		-		0.0248		~ 0

$$K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{2.00 \times 10^{-9}} = 5.00 \times 10^{-6}$$

$$K_{b} = \frac{\left[HOBr \right] \left[OH^{-1} \right]}{\left[OBr^{-1} \right]} = \frac{\left(0.0248 \right) \left[OH^{-1} \right]}{\left(0.107 \right)} = 5.00 \times 10^{-6}$$
$$\frac{\left(5.00 \times 10^{-6} \right) \left(0.107 \right)}{\left(0.0248 \right)} = 2.15 \times 10^{-5} = \left[OH^{-1} \right]$$
$$K_{w} = \left[H^{+1} \right] \left[OH^{-1} \right] = 1.00 \times 10^{-14}$$
$$\left[H^{+1} \right] = \frac{1.00 \times 10^{-14}}{\left[OH^{-1} \right]} = \frac{1.00 \times 10^{-14}}{2.15 \times 10^{-5}} = 4.64 \times 10^{-10}$$

OR, you could find the pH and then calculate the Antilog (- pH) to get the [H^{+1}].

(iii) Calculate [$H^{\!+\!1}$] in the flask after the $HNO_{3\ (aq)}$ has been added.

$$K_{w} = \begin{bmatrix} H^{+1} \end{bmatrix} \begin{bmatrix} OH^{-1} \end{bmatrix} = 1.00 \times 10^{-14}$$
$$\begin{bmatrix} OH^{-1} \end{bmatrix} = \frac{1.00 \times 10^{-14}}{\begin{bmatrix} H^{+1} \end{bmatrix}} = \frac{1.00 \times 10^{-14}}{4.64 \times 10^{-10}} = 2.15 \times 10^{-5} M$$

(iv) Calculate the pH of the titration solution after the $HNO_{3 (aq)}$ has been added.

$$\mathbf{pH} = -\log (4.64 \times 10^{-10}) = 9.33$$