Honors Chemistry: Gases and Their Properties: Reinforcement
Answer the following questions; Be sure to show all work and all units. Also, be sure to re-arrange the variables before solving the problem.

1. A gas system has an initial pressure of 2680 torr with the volume unknown. When the pressure changes to 2240 torr the volume is found to be 6.62 L What was the initial volume in $\mathbf{m L}$?
n
2. A gas system has an initial number of moles of 0.0983 moles with the volume unknown. When the number of moles changes to 0.00296 moles, under conditions of constant P (pressure) and T (temperature), the volume is found to be 0.298 L What was the initial volume in $\mathbf{m L}$?

$$
n_{2} \wedge V_{2}
$$

$$
\uparrow ? V_{1}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{n}_{1}=0.0983 \text { mole } \\
\mathrm{V}_{1}=? \mathrm{~mL} \\
\mathrm{n}_{2}=0.00296 \text { mole } \\
\mathrm{V}_{2}=0.298 \text { liter }
\end{array} \\
& \begin{array}{l}
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \\
\frac{9.90 L}{n_{2}} \times \frac{V_{2} n_{1}}{V_{1}}=\frac{(0.298 \mathrm{~L})(0.0983 \mathrm{~mol})}{(0.00296 \mathrm{~mol})}=9.90 \mathrm{LL} \\
1 \mathrm{~L}
\end{array}
\end{aligned} \quad \begin{aligned}
& \\
&
\end{aligned}
$$

3. A gas system has initial volume and temperature of 8330 mL and 335.3 K If the volume changes to 5080 mL , what will the resultant temperature be in ${ }^{\circ} \mathrm{C}$?

IGNORE!

4. A sample containing three gases are within a ter fifer container (at the same temperature). Calculate the partial pressure of each gas - if the total pressure within the container has a pressure of 476 kPa . Within the container there is: 45.3 grams of nitrogen gas, 187 grams of argon gas, and 34.1 grams of chlorine gas.

$$
P_{T}=P_{1}+P_{2}+P_{3}
$$

$\frac{45.3 \mathrm{~g} \mathrm{~N} N_{2}}{} \times \frac{1 \mathrm{~mol} N_{2}}{2(14.01 \mathrm{~g})}=1.6167 \mathrm{~mol} \mathrm{~N}_{2}$

$$
\frac{187 g \mathrm{Ar}}{39.95 \mathrm{~mol} \mathrm{Ar}}=4.6809 \mathrm{~mol} \mathrm{Ar}
$$

$$
\frac{34.1 \mathrm{~g} \mathrm{Cl}_{2}}{} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{2} 12(35.45 \mathrm{~g}) \quad=0.48096 \mathrm{~mol} \mathrm{Cl}_{2}
$$

$$
\begin{aligned}
& P_{N_{2}}: \frac{1.6167 \mathrm{~mol}}{6.77856 \mathrm{~mol}}(476 \mathrm{kPa})=114 \mathrm{kPa} \\
& P_{\mathrm{Ar}}: \frac{4.6809 \mathrm{~mol}}{6.77856 \mathrm{~mol}}(476 \mathrm{kPa})=328 \mathrm{kPa} \\
& P_{\mathrm{Cl}_{2}}: \frac{0.48096 \mathrm{~mol}}{6.77856 \mathrm{~mol}}(476 \mathrm{kPa})=34 \mathrm{kPa}
\end{aligned}
$$

5. A gas system has initial pressure and volume of 58.70 kPa and 2070 mL If the volume changes to 2.23 L , what will the resultant pressure be in torr?

6. A gas system has initial volume and temperature of 6.63 L and $26.4^{\circ} \mathrm{C}$ If the temperature changes to 260.0 K , what will the resultant volume be in L ?
$\mathrm{V}_{1}=6.63 \mathrm{~L}$

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \begin{aligned}
& \text { Use Kelvin the scale while working with temperature, convert } \\
& \text { at the end of the problem. }
\end{aligned}
$$

$\mathrm{T}_{1}=26.4^{0} \mathrm{C}$
$\mathrm{V}_{2}=$? L
$26.4^{0} C+273=299.4 K$
$\mathrm{T}_{2}=260.0 \mathrm{~K}$

$$
V_{2}=\frac{V_{1} T_{2}}{T_{1}}=\frac{(6.63 \mathrm{~L})(260.0 \mathrm{~K})}{(299.4 \mathrm{~K})}=5.76 \mathrm{~L}
$$

7. A gas system has an initial volume of 4.15 L with the number of moles unknown. When the volume changes to 4790 mL , under conditions of constant P and T , the number of moles is found to be 0.222 moles What was the initial number of moles?

8. A sample containing two gases are within a 6.50 liter container (at the same temperature). Calculate the partial pressure of each gas - if the total pressure within the container has a pressure of 3.44 atm . Within the container there is: 42.3% oxygen gas and 57.7% helium gas.
