GASES AND THEIR PROPERTIES - LECTURE NOTES
 Homework Answers (solutions to the homework) (the 2's) - Craig

PRACTICE PROBLEMS:

1. You collect a sample of oxygen gas by the water-displacement method described in the example. If the atmospheric pressure is 99.4 kPa and the water-vapor pressure is 4.5 kPa , then what is the partial pressure of the oxygen gas. (answer: 94.9 kPa)

Answer:

$$
\begin{gathered}
P_{T}=99.4 \mathrm{kPa} ; \quad P_{\mathrm{H}_{2} \mathrm{O}}=4.5 \mathrm{kPa} \\
P_{T}=P_{O_{2}}+P_{\mathrm{H}_{2} \mathrm{O}} \\
99.4 \mathrm{kPa}=P_{O_{2}}+4.5 \mathrm{kPa} \\
P_{O_{2}}=99.4 \mathrm{kPa}-4.5 \mathrm{kPa}=94.9 \mathrm{kPa}
\end{gathered}
$$

2. A mixture of 84.06 grams of nitrogen gas and 83.80 grams of krypton gas has a total pressure of 280. kPa . What is the partial pressure of each gas? (answer: $\mathrm{N}_{2}=210 . \mathrm{kPa}, \mathrm{Kr}=70.0 \mathrm{kPa}$)

Answer:

$$
\begin{aligned}
& P_{T}=P_{N_{2}}+P_{K r} \\
& \frac{84.06 \mathrm{~g} \mathrm{~N}_{2}}{x} \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{2(14.01 \mathrm{~g})}=3.0 \mathrm{~mol} \mathrm{~N} \\
& \frac{83.80 \mathrm{~g} \mathrm{Kr}}{} x \frac{1 \mathrm{~mol} \mathrm{Kr}}{83.80 \mathrm{~g}}=1.0 \mathrm{~mol} \mathrm{Kr} \\
& 3.0 \text { mole }+1.0 \text { mole }=4.0 \text { moles of total gas } \\
& P_{N_{2}}=\frac{3}{4}(280 \mathrm{kPa})=210 \mathrm{kPa} \\
& P_{N_{2}}=\frac{1}{4}(280 \mathrm{kPa})=70 \mathrm{kPa} \\
& P_{T}=P_{N_{2}}+P_{K r}=210 \mathrm{kPa}+70 \mathrm{kPa}=280 \mathrm{kPa}
\end{aligned}
$$

