SHOW ALL WORK, ALL EQUATIONS, and ALL UNITS
Molarity and Percent Composition - More Practice before the quiz:

1) Calculate the number of moles of $\mathrm{Cu}_{2} \mathrm{SO}_{4}$ are dissolved in 4.55 L of a $8.50 \mathrm{M} \mathrm{Cu} \mathrm{Cu}_{2} \mathrm{SO}_{4}$ solution?
2) Calculate the mass (in kilograms) of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ that are dissolved in a 4.95 M solution that has a volume of 2880 mL ?
$\frac{2880 \mathrm{~mL}}{} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{~mL}} \times \frac{4.95 \mathrm{~mol} \mathrm{Ag}_{3} P O_{4}}{L} \times \frac{418.58 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Ag}_{3} P O_{4}} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}=5.97 \mathrm{~kg} \mathrm{Ag}_{3} P O_{4}$
3) Calculate the mass in grams of $\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{4}$ that are needed to make five liters of a 6.43 M solution?
4) Calculate the molarity of a $\mathrm{Bi}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution where 285.32 grams of $\mathrm{Bi}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in enough solvent so that the final volume is 3.90 liters?

$$
\begin{aligned}
& \frac{285.32 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{Bi} i_{2}\left(\mathrm{SO}_{4}\right)_{3}}{706.14 \mathrm{~g}}=0.404 \mathrm{~mol} \mathrm{Bi} 2\left(\mathrm{SO}_{4}\right)_{3} \\
& M=\frac{0.404 \mathrm{~mol} \mathrm{Bi}\left(\mathrm{SO}_{4}\right)_{3}}{3.90 \mathrm{~L}}=0.104 \frac{\mathrm{~mol}}{\mathrm{~L}} \text { or } 0.104 \mathrm{M}
\end{aligned}
$$

5) Calculate the molarity of a $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution where 533 grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is dissolved in enough water so that the final volume is 925 mL ?
6) Give the complete directions for the preparation of 7.20 liters of a $10.3 \mathrm{M} \mathrm{Zn}\left(\mathrm{IO}_{3}\right)_{2}$ solution.

$$
\frac{7.20 \mathrm{~L}}{} \times \frac{10.3 \mathrm{~mol} \mathrm{Zn}\left(\mathrm{IO}_{3}\right)_{2}}{L} \times \frac{415.21 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Zn}\left(\mathrm{IO}_{3}\right)_{2}}=30791.97 \mathrm{~g} \mathrm{Zn}\left(\mathrm{IO}_{3}\right)_{2}
$$

Place $30791.97 \mathrm{~g} \mathrm{Zn}\left(\mathrm{IO}_{3}\right)_{2}$ in a volumetric flask and then add enough water so that the total volume equals 7.20 liters.
7) Calculate the percent composition of all the elements in $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$.
8) Calculate the percent composition of sulfur in $\mathrm{Rb}_{2} \mathrm{SO}_{4}$.

$$
\begin{gathered}
\mathrm{Rb}_{2} \mathrm{SO}_{4}: 2(85.47 \mathrm{~g})+32.06 \mathrm{~g}+4(16 \mathrm{~g})=267 \mathrm{~g} / \mathrm{mol} \\
\% S=\frac{32.06 \mathrm{~g}}{267 \mathrm{~g}} \times 100=12.0 \%
\end{gathered}
$$

