SHOW ALL WORK, ALL EQUATIONS, and ALL UNITS

Name: _____

Moles, Molar Mass, Molarity, Empirical Formula, Molecular Formula, and Hydrates:

1. Calculate the **molar mass** for:
$$CoCl_2 \bullet 6 H_2O$$

(Hint: the "dot" means that you have a hydrate)

Answers:

$$\left(58.93\frac{g}{mol}\right) + 2\left(35.45\frac{g}{mol}\right) + 6\left[2\left(1.008\frac{g}{mol}\right) + \left(16.00\frac{g}{mol}\right)\right] = 237.926\frac{g}{mol}$$

2. Calculate **molar mass** for iron(III) carbonate.

Answers:

$$Fe_2(CO_3)_3 : 2\left(55.85\frac{g}{mol}\right) + 3\left(12.01\frac{g}{mol}\right) + 9\left(16.00\frac{g}{mol}\right) = 291.73\frac{g}{mol}$$

3. Calculate the number of **moles** for 466 milligrams of LiOH.

Answers:

Recall the steps:

$$mg \leftrightarrow g \leftrightarrow moles \leftrightarrow molecules \leftrightarrow atoms$$

$$\frac{466 \text{ mg LiOH}}{1000 \text{ mg}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol LiOH}}{23.948 \text{ g}} = 0.0195 \text{ mol LiOH}$$

4. Calculate the number of **moles** for 723 grams of magnesium phosphate.

Answers:

Recall the steps:

 $kg \leftrightarrow g \leftrightarrow moles \leftrightarrow molecules \leftrightarrow atoms$

$$\frac{723 \ g \ Mg_3(PO_4)_2}{262.84 \ g} \times \frac{1 \ mol \ Mg_3(PO_4)_2}{262.84 \ g} = 2.75 \ mol \ Mg_3(PO_4)_2$$

5. Calculate the number of **molecules** for 1.50 kilograms of $C_6H_{12}O_6$.

Answers:

Recall the steps:

$$kg \leftrightarrow g \leftrightarrow moles \leftrightarrow molecules \leftrightarrow atoms$$

$$\frac{1.50 \ kg}{1 \ kg} \times \frac{1000 \ g}{1 \ kg} \times \frac{1 \ mol \ C_6 H_{12} O_6}{180.156 \ g} \times \frac{6.02 \times 10^{23} \ molecules}{1 \ mol \ C_6 H_{12} O_6} = 5.01 \times 10^{24} \ molecules \ C_6 H_{12} O_6$$

Answers:

A question like this is perfect for LEARNING HOW to read a question – Notice, you DO NOT need to write the formula for the chromium(VI) sulfate to answer the question since it asked only for MOLECULES and you know the number of MOLES !!!

Recall the steps:

$$kg \leftrightarrow g \leftrightarrow moles \leftrightarrow molecules \leftrightarrow atoms$$

$$\frac{3.55 \ mol \ Cr(SO_4)_3}{1 \ mol \ Cr(SO_4)_3} \times \frac{6.02 \times 10^{23} \ molecules}{1 \ mol \ Cr(SO_4)_3} = 2.14 \times 10^{24} \ molecules \ Cr(SO_4)_3$$

7. Calculate the number of **atoms** for 4.23×10^{-5} kilograms of tin(IV) nitrate.

Answers:

This will be the LONGEST problem (the one with the most steps)

$$\frac{4.23 \times 10^{-5} \ kg}{1 \ kg} \times \frac{1000 \ g}{1 \ kg} \times \frac{1 \ mol \ Sn(NO_3)_4}{366.75 \ g} \times \frac{6.02 \times 10^{23} \ molecules}{1 \ mol \ Sn(NO_3)_4} \times \frac{17 \ atoms}{1 \ molecule \ Sn(NO_3)_4} = 1.18 \times 10^{21} \ atoms$$

8. Calculate the number of **moles** of titanium(III) chlorate that are dissolved in 4.22 L of a 12.5 *M* solution?

Answers:

If you KNOW both the volume and molarity of a substance, ALWAYS start with the VOLUME !!!

$$\frac{4.22 \ L}{1 \ L} \times \frac{12.5 \ mol}{1 \ L} = 52.8 \ mol$$

A question like this is perfect for LEARNING HOW to read a question – Notice, you DO NOT need to write the formula for titanium(III) chlorate to answer the question since it asked only for MOLES !!!

9. Calculate the number of **grams** of sodium hydroxide are needed to make three liters of a 6.99 *M* NaOH solution? *Answers:*

If you KNOW both the volume and molarity of a substance, ALWAYS start with the VOLUME !!!

$$\frac{3 L}{1 L} \times \frac{6.99 \ mol \ NaOH}{1 L} \times \frac{39.998 \ g}{1 \ mol \ NaOH} = 839 \ g$$

10. Calculate the **molarity** of a sodium acetate solution where one kilogram of $NaC_2H_3O_2$ is dissolved in enough water so that the final volume is two liters?

Answers:

$$M = \frac{moles}{liters}$$

$$NaC_{2}H_{3}O_{2}: \frac{1 \ kg}{1 \ kg} \times \frac{1000 \ g}{1 \ kg} \times \frac{1 \ mol \ NaC_{2}H_{3}O_{2}}{82.034 \ g} = 12.19 \ mol$$
$$M = \frac{12.19 \ mol}{2 \ liters} = 6.10 \ M$$

OR

$$M = \frac{1 \ kg}{2 \ L} \times \frac{1000 \ g}{1 \ kg} \times \frac{1 \ mol \ NaC_2H_3O_2}{82.034 \ g} = 6.10 \ \frac{mol}{L}$$

11. A certain compound contains the elements carbon, hydrogen, and oxygen (**in that order**). When a 10.72657 gram sample was analyzed, 5.14714 grams of carbon, and 1.008 grams of hydrogen were detected. What is the **molecular formula for this compound** if the molecular mass is 225.258 grams / mole?

Answers:

mass of O: 10.72657
$$g C_x H_y O_z - [(5.14714 g C) + (1.008 g H)] = 4.57143 g$$

$$C: \frac{5.14714 \ g}{12.01 \ g} \times \frac{1 \ mol \ C}{12.01 \ g} = 0.42857 \ mol \qquad ; \quad \frac{0.42857 \ mol}{0.28571 \ mol} = 1.50 \qquad ; \quad 1.50 = 1\frac{1}{2} \ x \ 2 = 3$$
$$H: \frac{1.008 \ g}{1.008 \ g} \times \frac{1 \ mol \ H}{1.008 \ g} = 1.00 \ mol \qquad ; \quad \frac{1.00 \ mol}{0.28571 \ mol} = 3.50 \qquad ; \quad 3.50 = 3\frac{1}{2} \ x \ 2 = 7$$
$$O: \frac{4.57143 \ g}{16.00 \ g} \times \frac{1 \ mol \ O}{16.00 \ g} = 0.28571 \ mol \qquad ; \quad \frac{0.28571 \ mol}{0.28571 \ mol} = 1 \qquad ; \quad 1.00 = 1 \ x \ 2 = 2$$

Empirical Formula = $C_3H_7O_2$

Empirical formula mass of $C_3H_7O_2 = 3(12.01 \ g) + 7(1.008 \ g) + 2(16.0 \ g) = 75.086 \ g$

 $(C_{3}H_{7}O_{2})_{n}$

$$n = \frac{molecular \ formula \ mass}{empirical \ formula \ mass} = \frac{225.258 \ g}{75.086 \ g} = 3$$

$$(C_3H_7O_2)_3 = C_9H_{21}O_6$$

12. What is the **formula for the hydrate** that is 89.62% CuWO₄ and 10.38% H₂O?

Answers:

$$CuWO_4: \frac{89.62 \ g}{311.2 \ g} \times \frac{1 \ mol \ CuWO_4}{311.2 \ g} = 0.287982 \ mol \quad ; \quad \frac{0.287982 \ mol}{0.287982 \ mol} = 1.00$$
$$H_2O: \frac{10.38 \ g}{18.016 \ g} \times \frac{1 \ mol \ H_2O}{18.016 \ g} = 0.57615 \ mol \qquad ; \quad \frac{0.57615 \ mol}{0.287982 \ mol} = 2.00$$

 $CuWO_4 \cdot 2H_2O$