HOMEWORK PROBLEMS:

1a. How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are dissolved in 4.95 liters of a $2.33 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

Answers:

If you are given the volume and molarity, and you KNOW the value of these two values - START with the volume. This will allow you to cancel out the volume unit and be left with the unit moles. This is a practice you must MASTER !!!

$$
\frac{4.95 \mathrm{~L}}{} \times \frac{2.33 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{L}=11.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}
$$

1b. How many moles of sodium chloride are dissolved in 1.75 liters of a 1.40 M NaCl solution?

Answers:

$$
\frac{1.75 \mathrm{~L}}{2.40 \mathrm{~mol} \mathrm{NaCl}} \underset{L}{1.45 \mathrm{~mol} \mathrm{NaCl}}
$$

1c. How many grams are in 1.25 liters of a $1.64 M$ copper(II) sulfate solution?
Answers:

$$
\frac{1.25 \mathrm{~L}}{L} \times \frac{1.64 \mathrm{~mol} \mathrm{CuSO}_{4}}{L} \times \frac{159.61 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{CuSO}_{4}}=327 \mathrm{~g} \mathrm{CuSO} 4
$$

1d. How many grams of HCl are in 1.56 liters of a 9.32 M HCl solution?

Answers:

Again, solving for this type of problem is the same as above, we are just adding one more step - converting the moles to mass (grams)...

$$
\frac{1.56 \mathrm{~L}}{} \times \frac{9.32 \mathrm{~mol} \mathrm{HCl}}{L} \times \frac{36.458 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{HCl}}=530 . \mathrm{g} \mathrm{CuSO} 4
$$

1e. What is the molarity of a NaOH solution where 10.3 g of sodium hydroxide is dissolved in a 300 . mL volume?

Answers:

You have two options for solving this problem: The first is demonstrated below - the "build it" technique... First find the number of moles and then determine the volume and then place the two values together... I highly recommend this method until you fully understand molarity...

$$
\begin{gathered}
\frac{10.3 \mathrm{~g} \mathrm{NaOH}}{} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{39.998 \mathrm{~g} \mathrm{NaOH}}=0.2575 \mathrm{~mol} \mathrm{NaOH} \\
\frac{300 . \mathrm{mL}}{} \times \frac{1 \mathrm{~L}}{1000 . \mathrm{mL}}=0.300 \mathrm{~L} \\
M=\frac{\mathrm{mol}}{L}=\frac{0.2575 \mathrm{~mol} \mathrm{NaOH}}{0.300 \mathrm{~L}}=0.858 \frac{\mathrm{~mol}}{\mathrm{~L}}=0.858 \mathrm{M} \mathrm{NaOH}
\end{gathered}
$$

The second method is to place all the values together and then solve. ONLY do this once you understand molarity...

$$
\frac{10.3 \mathrm{~g} \mathrm{NaOH}}{300 \mathrm{~mL}} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{39.998 \mathrm{~g} \mathrm{NaOH}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=0.858 \mathrm{M} \mathrm{NaOH}
$$

1f. What is the molarity of a solution where 23.4 g of nickel(II) carbonate is dissolved in a solvent with 1.72 liters of volume?

Answers:

$$
\begin{gathered}
\frac{23.4 \mathrm{~g} \mathrm{NiCO}}{3} \\
M=\frac{1 \mathrm{~mol} \mathrm{NiCO}_{3}}{118.94 \mathrm{~g} \mathrm{NiCO}_{3}}=0.1967 \mathrm{~mol} \mathrm{NiCO}_{3} \\
\mathrm{M}=\frac{0.1967 \mathrm{~mol} \mathrm{NiCO}}{3} \\
1.72 \mathrm{~L}
\end{gathered} \mathrm{OR}^{2}=0.114 \frac{\mathrm{~mol}}{\mathrm{~L}}=0.114 \mathrm{M} \mathrm{NiCO}_{3} .
$$

