HOMEWORK PROBLEMS:

5a. The molecular mass of benzene, an important industrial solvent, is $78.0 \mathrm{~g} / \mathrm{mol}$ and its empirical formula is CH . What is the molecular formula for benzene?

Answers:

$$
C H=12.01 \mathrm{~g} / \mathrm{mol}+1.008 \mathrm{~g} / \mathrm{mol}=13.018 \mathrm{~g} / \mathrm{mol}
$$

$$
n=\frac{78.0 \frac{g}{\mathrm{~mol}}}{13.018 \frac{\mathrm{~g}}{\mathrm{~mol}}}=6
$$

$$
(\mathrm{CH})_{n}=(\mathrm{CH})_{6}=\mathrm{C}_{6} \mathrm{H}_{6}
$$

5b. What is the molecular formula of dichloroacetic acid, if the empirical formula is CHOCl and the molecular mass of the acid is $129 \mathrm{~g} / \mathrm{mol}$?

Answers:

$$
\begin{gathered}
C H O C l=12.01 \mathrm{~g} / \mathrm{mol}+1.008 \mathrm{~g} / \mathrm{mol}+16.00 \mathrm{~g} / \mathrm{mol}+35.45 \mathrm{~g} / \mathrm{mol}=64.468 \mathrm{~g} / \mathrm{mol} \\
n=\frac{129 \frac{\mathrm{~g}}{\mathrm{~mol}}}{64.468 \frac{\mathrm{~g}}{\mathrm{~mol}}}=2 \\
(\mathrm{CHOCl})_{n}=(\mathrm{CHOCl})_{2}=\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}
\end{gathered}
$$

5c. What is the molecular formula of cyanuric chloride if the empirical formula is CClN and the molecular mass is $184.5 \mathrm{~g} / \mathrm{mol}$?

Answers:

$$
\begin{gathered}
C C I N=12.01 \mathrm{~g} / \mathrm{mol}+35.45 \mathrm{~g} / \mathrm{mol}+\mathbf{1 4 . 0 1 \mathrm { g } / \mathrm { mol } = 6 1 . 4 7 \mathrm { g } / \mathrm { mol }} \\
n=\frac{184.5 \frac{\mathrm{~g}}{\mathrm{~mol}}}{61.47 \frac{\mathrm{~g}}{\mathrm{~mol}}}=3 \\
(\mathrm{CCIN})_{n}=(C C I N)_{3}=C_{3}{C l_{3}}^{2} N_{3}
\end{gathered}
$$

5d. Asorbic acid, vitamin C, has a percentage composition of 40.9\% carbon, 4.58\% hydrogen, and 54.5% oxygen. Its molecular mass is $176.1 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?

Answers:

$$
\left.\begin{aligned}
& C: \frac{40.9 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}}=3.4055 \mathrm{~mol} \\
& H: \frac{4.58 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g}}=4.5437 \mathrm{~mol} \\
& O: \frac{54.5 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}}=3.4063 \mathrm{~mol}
\end{aligned} \right\rvert\, \begin{aligned}
& =\frac{3.4055 \mathrm{~mol}}{3.4055 \mathrm{~mol}}=1 \times 3=3 \\
& =\frac{4.5437 \mathrm{~mol}}{3.4055 \mathrm{~mol}}=1 \frac{1}{3} \times 3=4 \\
& =\frac{3.4063 \mathrm{~mol}}{3.4055 \mathrm{~mol}}=1 \times 3=3
\end{aligned}
$$

$$
\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}=3(12.01 \mathrm{~g} / \mathrm{mol})+4(1.008 \mathrm{~g} / \mathrm{mol})+3(16.00 \mathrm{~g} / \mathrm{mol})=88.062 \mathrm{~g} / \mathrm{mol}
$$

$$
n=\frac{176.1 \frac{\mathrm{~g}}{\mathrm{~mol}}}{88.062 \frac{\mathrm{~g}}{\mathrm{~mol}}}=2
$$

$$
\left(C_{3} H_{4} O_{3}\right)_{n}=\left(C_{3} H_{4} O_{3}\right)_{2}=C_{6} H_{8} O_{6}
$$

5e. Aspirin contains 60.0% carbon, 4.48% hydrogen, and 35.5% oxygen. It has a molecular mass of $180 \mathrm{~g} / \mathrm{mol}$. What is the its empirical and molecular formulas?

Answers:

$$
\begin{aligned}
& C: \frac{60.0 \mathrm{~g}}{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}}=4.9958 \mathrm{~mol} \\
& H: \frac{4.48 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g}}=4 . \overline{4} \mathrm{~mol} \\
& O: \frac{35.5 \mathrm{~g}}{} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}}=2.21875 \mathrm{~mol}
\end{aligned}\left\{\begin{array}{l}
=\frac{4.9958 \mathrm{~mol}}{2.21875 \mathrm{~mol}}=2 \frac{1}{4} \times 4=9 \\
=\frac{4 . \overline{4} \mathrm{~mol}}{2.21875 \mathrm{~mol}}=2 \times 4=8 \\
=\frac{2.21875 \mathrm{~mol}}{2.21875 \mathrm{~mol}}=1 \times 4=4
\end{array}\right.
$$

$$
\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}=9(12.01 \mathrm{~g} / \mathrm{mol})+8(1.008 \mathrm{~g} / \mathrm{mol})+4(16.00 \mathrm{~g} / \mathrm{mol})=180.154 \mathrm{~g} / \mathrm{mol}
$$

$$
n=\frac{180 \frac{\mathrm{~g}}{\mathrm{~mol}}}{180.154 \frac{\mathrm{~g}}{\mathrm{~mol}}}=1
$$

$$
\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)_{n}=\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)_{1}=\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}
$$

