Examples:

I. A certain photon of light has a wavelength of 422 nm . What is the frequency of the light?

$$
\begin{gathered}
\frac{422 \mathrm{~nm}}{} \times \frac{1 \mathrm{~m}}{10^{9} \mathrm{~nm}}=4.22 \times 10^{-7} \mathrm{~m} \\
v=\frac{C}{\lambda}=\frac{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{sec}}}{4.22 \times 10^{-7} \mathrm{~m}}=\frac{3.00 \times 10^{8} \mathrm{~m}}{4.22 \times 10^{-7} \mathrm{~m}(\mathrm{sec})}=7.11 \times 10^{14} \frac{1}{\mathrm{sec}}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{c}=\lambda \nu \\
& \mathrm{E}=h \nu \\
& \mathrm{E}=\mathrm{mc}^{2} \\
& \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
& h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{sec} \\
& \mathrm{~Hz}=1 / \mathrm{sec}
\end{aligned}
$$

II. What is the energy of a quantum of light from part I.

$$
E=h v=\left(6.626 \times 10^{-34} J \cdot \sec \right)\left(7.11 \times 10^{14} \frac{1}{\mathrm{sec}}\right)=4.71 \times 10^{-19} \mathrm{~J}
$$

1. What is the energy of a quantum of light with a frequency of $7.39 \times 10^{14} \mathrm{~Hz}$?

$$
E=h v=\left(6.626 \times 10^{-34} J \cdot \sec \right)\left(7.39 \times 10^{14} \frac{1}{\mathrm{sec}}\right)=4.90 \times 10^{-19} J
$$

2. What is the wavelength of the quantum of light in question 1 ?

$$
\lambda=\frac{C}{v}=\frac{3.00 \times 10^{8} \frac{m}{\mathrm{sec}}}{7.39 \times 10^{14} \frac{1}{\mathrm{sec}}}=\frac{3.00 \times 10^{8} \mathrm{~m}(\mathrm{sec})}{7.39 \times 10^{14}(\mathrm{sec})}=4.06 \times 10^{-7} \mathrm{~m}
$$

3. A certain red light has a wavelength of 680 nm . What is the frequency of the light?

$$
\begin{gathered}
\frac{680 \mathrm{~nm}}{} \times \frac{1 \mathrm{~m}}{10^{9} \mathrm{~nm}}=6.80 \times 10^{-7} \mathrm{~m} \\
v=\frac{C}{\lambda}=\frac{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{sec}}}{6.80 \times 10^{-7} \mathrm{~m}}=\frac{3.00 \times 10^{8} \mathrm{~m}}{6.80 \times 10^{-7} \mathrm{~m}(\mathrm{sec})}=4.41 \times 10^{14} \frac{1}{\mathrm{sec}}
\end{gathered}
$$

4. What is the energy of a quantum of light from question 3?

$$
E=h v=\left(6.626 \times 10^{-34} J \cdot \sec \right)\left(4.41 \times 10^{14} \frac{1}{\mathrm{sec}}\right)=2.92 \times 10^{-19} J
$$

5. A certain blue light has a frequency of $6.91 \times 10^{14} \mathrm{~Hz}$. What is the wavelength of the light?

$$
\lambda=\frac{C}{v}=\frac{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{sec}}}{6.91 \times 10^{14} \frac{1}{\mathrm{sec}}}=\frac{3.00 \times 10^{8} \mathrm{~m}(\mathrm{sec})}{6.91 \times 10^{14}(\mathrm{sec})}=4.34 \times 10^{-7} \mathrm{~m}
$$

6. What is the energy of a quantum of light from question 5?

$$
E=h v=\left(6.626 \times 10^{-34} J \cdot \sec \right)\left(6.91 \times 10^{14} \frac{1}{\sec }\right)=4.58 \times 10^{-19} J
$$

7. The energy for a quantum of light is $2.84 \times 10^{-19} \mathrm{~J}$. What is the wavelength of this light?

$$
\begin{gathered}
E=h v ; \\
v=\frac{E}{h}=\frac{2.84 \times 10^{-19} J}{6.626 \times 10^{-34} J \cdot \mathrm{sec}}=\frac{2.84 \times 10^{-19} J}{6.626 \times 10^{-34} J(\mathrm{sec})}=4.29 \times 10^{14} \frac{1}{\mathrm{sec}} \\
C=\lambda v \quad ; \quad \lambda=\frac{C}{v}=\frac{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{sec}}}{4.29 \times 10^{14} \frac{1}{\mathrm{sec}}}=\frac{3.00 \times 10^{8} \mathrm{~m}(\mathrm{sec})}{4.29 \times 10^{14}(\mathrm{sec})}=7.00 \times 10^{-7} \mathrm{~m}
\end{gathered}
$$

